Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln im Wärmekollaps

13.11.2012
Physiker simulieren erstmals Auswirkungen thermischer Fluktuationen
Ab welchem Druck fängt eine Hohlkugel an zu kollabieren? Dieses klassische Problem der Mechanik spielt auch beim Verständnis von Mikrokapseln eine Rolle, die Wirkstoffe im Körper gezielt zu einem Organ transportieren können. Dabei kommen thermische Fluktuationen hinzu, durch die sich die mikroskopischen Schalen unkontrolliert verformen. Unter Druck kollabieren sie deshalb eher als bisher vorhergesagt, wie Jülicher Wissenschaftler und ihre Partner an der Universität Harvard nun erstmals exakt berechnet haben. Die Ergebnisse wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

In den letzten Jahren wurden aus verschiedenartigen Materialien Kapseln mit einem Durchmesser von wenigen Mikro- oder Nanometern hergestellt, zum Beispiel aus elektrisch geladenen Polymeren, sogenannten Polyelektrolyten, oder aus Siliziumoxid. Ihre Dynamik und Interaktion ist entscheidend für mechanische Eigenschaften, die teilweise völlig neue Möglichkeiten bieten für Implantate, Prothesen oder maßgeschneiderte Träger für medizinische Wirkstoffe. Für die Entwicklung solcher Anwendungen ist es von Interesse, präzise vorhersagen zu können, wie sich die Kapseln unter Druck verhalten und ab welchem kritischen Wert es zum abrupten Kollaps kommt.

Die Deformation makroskopischer, starrer Kugelschalen wurde bereits vor über 50 Jahren von dem berühmten ungarisch-amerikanischen Mathematiker, Luftfahrt-Ingenieur und Physiker Theodore von Kármán sehr genau berechnet und beschrieben. Doch für den Nano- und Mikrometerbereich gilt dessen Formel nur begrenzt. „Aufgrund der thermischen Bewegung im angrenzenden Fluid sind mikroskopische Teilchen ständigen Stößen mit den umgebenden Molekülen und Atomen ausgesetzt, die sie abhängig von ihrer Elastizität und Größe unablässig verformen“, erläutert Prof. Gerhard Gompper vom Institut für Komplexe Systeme (ICS).

Die Jülicher Physiker haben gemeinsam mit Wissenschaftlern der Universität Harvard auf Superrechnern simuliert, wie sich die Form der winzigen Kugelschalen unter Einbeziehung der thermischen Fluktuationen verändert. „Mit unseren Berechnungen konnten wir erstmals zeigen, dass thermische Fluktuationen die Stabilität tatsächlich beeinflussen, speziell dann, wenn nicht nur die Teilchen selbst, sondern auch ihre Wanddicke im Verhältnis zum Radius sehr klein ausfallen“, so der Leiter des Bereichs „Theorie der Weichen Materie und Biophysik“.

Besonders stark sind die thermischen Effekte, wenn äußere Kräfte wirken, beispielsweise ein osmotischer Druck, der durch unterschiedlich hohe Stoffkonzentrationen innerhalb und außerhalb einer Zelle hervorgerufen wird. „Die thermisch bedingten Dellen und Knicke in der Oberfläche wirken wie eine Art Sollbruchstelle, die unter Druck schnell weiter anwächst. Das führt dazu, dass sich thermisch angeregte Kugeln um bis zu 20 Prozent leichter verformen und deutlich eher kollabieren, als durch die klassische Theorie vorhergesagt“, berichtet Mitautor Dr. Gerrit Vliegenthart vom Institute for Advanced Simulation (IAS) .

Betroffen von den thermischen Effekten sind unter anderem rote Blutkörperchen, deren Anteil im menschlichen Blut etwa 50 Prozent beträgt. Auf vergleichbare Werte bezüglich Größe und Elastizität kommen auch Polyelektrolyt-Kapseln, die unter anderem in der Druckindustrie als Farbkapseln eingesetzt werden. Derzeit werden sie zudem als Medikamenten-Träger weiterentwickelt, die medizinische Wirkstoffe gezielt über die Zeit abgeben oder zu bestimmten Organen transportieren können. Am stärksten wirken sich die thermischen Fluktuationen wahrscheinlich bei einem ziemlich exotischen Material aus: Mikrokapseln aus künstlicher Spinnenseide, entwickelt von Wissenschaftlern der TU München. Ihre Hülle ist extrem reißfest und mit einer Dicke von wenigen Nanometern konkurrenzlos dünn.

Welchen Einfluss thermische Fluktuationen auf die Formstabilität haben, lässt sich Gerhard Gompper zufolge übrigens auch mit einem einfachen Experiment nachvollziehen: „Man nehme ein Blatt Papier, lege es auf den Tisch, und versuche, diagonal entgegengesetzte Kanten gegeneinander zu verschieben, was wegen der hohen Schersteifigkeit kaum gelingt. Nun zerknüllt man das Papier, streicht es fast glatt und legt es wieder auf den Tisch. Die Kanten lassen sich nun deutlich besser gegeneinander verschieben als vorher, wobei die verbliebenen Knicke im Papier den thermischen Fluktuationen entsprechen.“
Originalpublikation:
Jayson Paulose, Gerard A.Vliegenthart, Gerhard Gompper, David R. Nelson
Fluctuating shells under pressure
PNAS 2012; published ahead of print November 12, 2012
DOI:10.1073/pnas.1212268109
Abstract: http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Ansprechpartner:
Dr. Gerrit Vliegenthart
Tel. 02461 61-6131
g.vliegenthart@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

nachricht ESO-Beobachtungen zeigen, dass der erste interstellare Asteroid mit nichts vergleichbar ist, was wir bisher kennen
21.11.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie