Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln im Wärmekollaps

13.11.2012
Physiker simulieren erstmals Auswirkungen thermischer Fluktuationen
Ab welchem Druck fängt eine Hohlkugel an zu kollabieren? Dieses klassische Problem der Mechanik spielt auch beim Verständnis von Mikrokapseln eine Rolle, die Wirkstoffe im Körper gezielt zu einem Organ transportieren können. Dabei kommen thermische Fluktuationen hinzu, durch die sich die mikroskopischen Schalen unkontrolliert verformen. Unter Druck kollabieren sie deshalb eher als bisher vorhergesagt, wie Jülicher Wissenschaftler und ihre Partner an der Universität Harvard nun erstmals exakt berechnet haben. Die Ergebnisse wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

In den letzten Jahren wurden aus verschiedenartigen Materialien Kapseln mit einem Durchmesser von wenigen Mikro- oder Nanometern hergestellt, zum Beispiel aus elektrisch geladenen Polymeren, sogenannten Polyelektrolyten, oder aus Siliziumoxid. Ihre Dynamik und Interaktion ist entscheidend für mechanische Eigenschaften, die teilweise völlig neue Möglichkeiten bieten für Implantate, Prothesen oder maßgeschneiderte Träger für medizinische Wirkstoffe. Für die Entwicklung solcher Anwendungen ist es von Interesse, präzise vorhersagen zu können, wie sich die Kapseln unter Druck verhalten und ab welchem kritischen Wert es zum abrupten Kollaps kommt.

Die Deformation makroskopischer, starrer Kugelschalen wurde bereits vor über 50 Jahren von dem berühmten ungarisch-amerikanischen Mathematiker, Luftfahrt-Ingenieur und Physiker Theodore von Kármán sehr genau berechnet und beschrieben. Doch für den Nano- und Mikrometerbereich gilt dessen Formel nur begrenzt. „Aufgrund der thermischen Bewegung im angrenzenden Fluid sind mikroskopische Teilchen ständigen Stößen mit den umgebenden Molekülen und Atomen ausgesetzt, die sie abhängig von ihrer Elastizität und Größe unablässig verformen“, erläutert Prof. Gerhard Gompper vom Institut für Komplexe Systeme (ICS).

Die Jülicher Physiker haben gemeinsam mit Wissenschaftlern der Universität Harvard auf Superrechnern simuliert, wie sich die Form der winzigen Kugelschalen unter Einbeziehung der thermischen Fluktuationen verändert. „Mit unseren Berechnungen konnten wir erstmals zeigen, dass thermische Fluktuationen die Stabilität tatsächlich beeinflussen, speziell dann, wenn nicht nur die Teilchen selbst, sondern auch ihre Wanddicke im Verhältnis zum Radius sehr klein ausfallen“, so der Leiter des Bereichs „Theorie der Weichen Materie und Biophysik“.

Besonders stark sind die thermischen Effekte, wenn äußere Kräfte wirken, beispielsweise ein osmotischer Druck, der durch unterschiedlich hohe Stoffkonzentrationen innerhalb und außerhalb einer Zelle hervorgerufen wird. „Die thermisch bedingten Dellen und Knicke in der Oberfläche wirken wie eine Art Sollbruchstelle, die unter Druck schnell weiter anwächst. Das führt dazu, dass sich thermisch angeregte Kugeln um bis zu 20 Prozent leichter verformen und deutlich eher kollabieren, als durch die klassische Theorie vorhergesagt“, berichtet Mitautor Dr. Gerrit Vliegenthart vom Institute for Advanced Simulation (IAS) .

Betroffen von den thermischen Effekten sind unter anderem rote Blutkörperchen, deren Anteil im menschlichen Blut etwa 50 Prozent beträgt. Auf vergleichbare Werte bezüglich Größe und Elastizität kommen auch Polyelektrolyt-Kapseln, die unter anderem in der Druckindustrie als Farbkapseln eingesetzt werden. Derzeit werden sie zudem als Medikamenten-Träger weiterentwickelt, die medizinische Wirkstoffe gezielt über die Zeit abgeben oder zu bestimmten Organen transportieren können. Am stärksten wirken sich die thermischen Fluktuationen wahrscheinlich bei einem ziemlich exotischen Material aus: Mikrokapseln aus künstlicher Spinnenseide, entwickelt von Wissenschaftlern der TU München. Ihre Hülle ist extrem reißfest und mit einer Dicke von wenigen Nanometern konkurrenzlos dünn.

Welchen Einfluss thermische Fluktuationen auf die Formstabilität haben, lässt sich Gerhard Gompper zufolge übrigens auch mit einem einfachen Experiment nachvollziehen: „Man nehme ein Blatt Papier, lege es auf den Tisch, und versuche, diagonal entgegengesetzte Kanten gegeneinander zu verschieben, was wegen der hohen Schersteifigkeit kaum gelingt. Nun zerknüllt man das Papier, streicht es fast glatt und legt es wieder auf den Tisch. Die Kanten lassen sich nun deutlich besser gegeneinander verschieben als vorher, wobei die verbliebenen Knicke im Papier den thermischen Fluktuationen entsprechen.“
Originalpublikation:
Jayson Paulose, Gerard A.Vliegenthart, Gerhard Gompper, David R. Nelson
Fluctuating shells under pressure
PNAS 2012; published ahead of print November 12, 2012
DOI:10.1073/pnas.1212268109
Abstract: http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Ansprechpartner:
Dr. Gerrit Vliegenthart
Tel. 02461 61-6131
g.vliegenthart@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics