Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln im Wärmekollaps

13.11.2012
Physiker simulieren erstmals Auswirkungen thermischer Fluktuationen
Ab welchem Druck fängt eine Hohlkugel an zu kollabieren? Dieses klassische Problem der Mechanik spielt auch beim Verständnis von Mikrokapseln eine Rolle, die Wirkstoffe im Körper gezielt zu einem Organ transportieren können. Dabei kommen thermische Fluktuationen hinzu, durch die sich die mikroskopischen Schalen unkontrolliert verformen. Unter Druck kollabieren sie deshalb eher als bisher vorhergesagt, wie Jülicher Wissenschaftler und ihre Partner an der Universität Harvard nun erstmals exakt berechnet haben. Die Ergebnisse wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

In den letzten Jahren wurden aus verschiedenartigen Materialien Kapseln mit einem Durchmesser von wenigen Mikro- oder Nanometern hergestellt, zum Beispiel aus elektrisch geladenen Polymeren, sogenannten Polyelektrolyten, oder aus Siliziumoxid. Ihre Dynamik und Interaktion ist entscheidend für mechanische Eigenschaften, die teilweise völlig neue Möglichkeiten bieten für Implantate, Prothesen oder maßgeschneiderte Träger für medizinische Wirkstoffe. Für die Entwicklung solcher Anwendungen ist es von Interesse, präzise vorhersagen zu können, wie sich die Kapseln unter Druck verhalten und ab welchem kritischen Wert es zum abrupten Kollaps kommt.

Die Deformation makroskopischer, starrer Kugelschalen wurde bereits vor über 50 Jahren von dem berühmten ungarisch-amerikanischen Mathematiker, Luftfahrt-Ingenieur und Physiker Theodore von Kármán sehr genau berechnet und beschrieben. Doch für den Nano- und Mikrometerbereich gilt dessen Formel nur begrenzt. „Aufgrund der thermischen Bewegung im angrenzenden Fluid sind mikroskopische Teilchen ständigen Stößen mit den umgebenden Molekülen und Atomen ausgesetzt, die sie abhängig von ihrer Elastizität und Größe unablässig verformen“, erläutert Prof. Gerhard Gompper vom Institut für Komplexe Systeme (ICS).

Die Jülicher Physiker haben gemeinsam mit Wissenschaftlern der Universität Harvard auf Superrechnern simuliert, wie sich die Form der winzigen Kugelschalen unter Einbeziehung der thermischen Fluktuationen verändert. „Mit unseren Berechnungen konnten wir erstmals zeigen, dass thermische Fluktuationen die Stabilität tatsächlich beeinflussen, speziell dann, wenn nicht nur die Teilchen selbst, sondern auch ihre Wanddicke im Verhältnis zum Radius sehr klein ausfallen“, so der Leiter des Bereichs „Theorie der Weichen Materie und Biophysik“.

Besonders stark sind die thermischen Effekte, wenn äußere Kräfte wirken, beispielsweise ein osmotischer Druck, der durch unterschiedlich hohe Stoffkonzentrationen innerhalb und außerhalb einer Zelle hervorgerufen wird. „Die thermisch bedingten Dellen und Knicke in der Oberfläche wirken wie eine Art Sollbruchstelle, die unter Druck schnell weiter anwächst. Das führt dazu, dass sich thermisch angeregte Kugeln um bis zu 20 Prozent leichter verformen und deutlich eher kollabieren, als durch die klassische Theorie vorhergesagt“, berichtet Mitautor Dr. Gerrit Vliegenthart vom Institute for Advanced Simulation (IAS) .

Betroffen von den thermischen Effekten sind unter anderem rote Blutkörperchen, deren Anteil im menschlichen Blut etwa 50 Prozent beträgt. Auf vergleichbare Werte bezüglich Größe und Elastizität kommen auch Polyelektrolyt-Kapseln, die unter anderem in der Druckindustrie als Farbkapseln eingesetzt werden. Derzeit werden sie zudem als Medikamenten-Träger weiterentwickelt, die medizinische Wirkstoffe gezielt über die Zeit abgeben oder zu bestimmten Organen transportieren können. Am stärksten wirken sich die thermischen Fluktuationen wahrscheinlich bei einem ziemlich exotischen Material aus: Mikrokapseln aus künstlicher Spinnenseide, entwickelt von Wissenschaftlern der TU München. Ihre Hülle ist extrem reißfest und mit einer Dicke von wenigen Nanometern konkurrenzlos dünn.

Welchen Einfluss thermische Fluktuationen auf die Formstabilität haben, lässt sich Gerhard Gompper zufolge übrigens auch mit einem einfachen Experiment nachvollziehen: „Man nehme ein Blatt Papier, lege es auf den Tisch, und versuche, diagonal entgegengesetzte Kanten gegeneinander zu verschieben, was wegen der hohen Schersteifigkeit kaum gelingt. Nun zerknüllt man das Papier, streicht es fast glatt und legt es wieder auf den Tisch. Die Kanten lassen sich nun deutlich besser gegeneinander verschieben als vorher, wobei die verbliebenen Knicke im Papier den thermischen Fluktuationen entsprechen.“
Originalpublikation:
Jayson Paulose, Gerard A.Vliegenthart, Gerhard Gompper, David R. Nelson
Fluctuating shells under pressure
PNAS 2012; published ahead of print November 12, 2012
DOI:10.1073/pnas.1212268109
Abstract: http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Ansprechpartner:
Dr. Gerrit Vliegenthart
Tel. 02461 61-6131
g.vliegenthart@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gefangen in Ruhelosigkeit
31.07.2015 | Max-Planck-Institut für Quantenoptik

nachricht Rosetta-Mission: Hinweise auf außerirdischen Ursprung des Lebens verdichten sich
31.07.2015 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gefangen in Ruhelosigkeit

Mit ultrakalten Atomen lässt sich ein neuer Materiezustand beobachten, in dem das System nicht ins thermische Gleichgewicht kommt.

Was passiert, wenn man kaltes und heißes Wasser mischt? Nach einer Weile ist das Wasser lauwarm – das System hat ein neues thermisches Gleichgewicht erreicht....

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: Superschneller Wellenritt im Kristall: Elektronik auf Zeitskala einzelner Lichtschwingungen möglich

Physikern der Universitäten Regensburg und Marburg ist es gelungen, die von einem starken Lichtfeld getriebene Bewegung von Elektronen in einem Halbleiter in extremer Zeitlupe zu beobachten. Dabei konnten sie ein grundlegend neues Quantenphänomen entschlüsseln. Die Ergebnisse der Wissenschaftler sind jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht worden (DOI: 10.1038/nature14652).

Die rasante Entwicklung in der Elektronik mit Taktraten bis in den Gigahertz-Bereich hat unser Alltagsleben revolutioniert. Sie stellt jedoch auch Forscher...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Erster Nachweis von Lithium in einem explodierenden Stern

Erstmals konnte das chemische Element Lithium in der ausgestoßenen Materie einer Nova nachgewiesen werden. Beobachtungen von Nova Centauri 2013 mit Teleskopen des La Silla-Observatoriums der ESO und in der Nähe von Santiago de Chile helfen bei der Aufklärung des Rätsels, warum so viele junge Sterne mehr von diesem Element enthalten als erwartet. Diese Entdeckung liefert ein seit langem fehlendes Teil im Puzzle der chemischen Entwicklungsgeschichte unserer Galaxie und ist ein großer Fortschritt für das Verständnis des Mischungsverhältnisses der chemischen Elemente in den Sternen unserer Milchstraße.

Das leichte chemische Element Lithium ist eines der wenigen Elemente, das nach unserer Modellvorstellung auch beim Urknall vor 13,8 Milliarden Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Türme und Maste aus Stahl – Neues aus Forschung und Anwendung

31.07.2015 | Veranstaltungen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungen

12. BMBF-Forum für Nachhaltigkeit: Green Economy, Energiewende und die Zukunft der Städte

30.07.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wiederaufladbare Batterien machen sich breit

31.07.2015 | Seminare Workshops

Alles zur Kryotechnik: HDT bietet Seminar zum „Kryostatbau“ an

31.07.2015 | Seminare Workshops

Erster Zug von Siemens für Thameslink‑Strecke in UK angekommen

31.07.2015 | Verkehr Logistik