Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln im Wärmekollaps

13.11.2012
Physiker simulieren erstmals Auswirkungen thermischer Fluktuationen
Ab welchem Druck fängt eine Hohlkugel an zu kollabieren? Dieses klassische Problem der Mechanik spielt auch beim Verständnis von Mikrokapseln eine Rolle, die Wirkstoffe im Körper gezielt zu einem Organ transportieren können. Dabei kommen thermische Fluktuationen hinzu, durch die sich die mikroskopischen Schalen unkontrolliert verformen. Unter Druck kollabieren sie deshalb eher als bisher vorhergesagt, wie Jülicher Wissenschaftler und ihre Partner an der Universität Harvard nun erstmals exakt berechnet haben. Die Ergebnisse wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

In den letzten Jahren wurden aus verschiedenartigen Materialien Kapseln mit einem Durchmesser von wenigen Mikro- oder Nanometern hergestellt, zum Beispiel aus elektrisch geladenen Polymeren, sogenannten Polyelektrolyten, oder aus Siliziumoxid. Ihre Dynamik und Interaktion ist entscheidend für mechanische Eigenschaften, die teilweise völlig neue Möglichkeiten bieten für Implantate, Prothesen oder maßgeschneiderte Träger für medizinische Wirkstoffe. Für die Entwicklung solcher Anwendungen ist es von Interesse, präzise vorhersagen zu können, wie sich die Kapseln unter Druck verhalten und ab welchem kritischen Wert es zum abrupten Kollaps kommt.

Die Deformation makroskopischer, starrer Kugelschalen wurde bereits vor über 50 Jahren von dem berühmten ungarisch-amerikanischen Mathematiker, Luftfahrt-Ingenieur und Physiker Theodore von Kármán sehr genau berechnet und beschrieben. Doch für den Nano- und Mikrometerbereich gilt dessen Formel nur begrenzt. „Aufgrund der thermischen Bewegung im angrenzenden Fluid sind mikroskopische Teilchen ständigen Stößen mit den umgebenden Molekülen und Atomen ausgesetzt, die sie abhängig von ihrer Elastizität und Größe unablässig verformen“, erläutert Prof. Gerhard Gompper vom Institut für Komplexe Systeme (ICS).

Die Jülicher Physiker haben gemeinsam mit Wissenschaftlern der Universität Harvard auf Superrechnern simuliert, wie sich die Form der winzigen Kugelschalen unter Einbeziehung der thermischen Fluktuationen verändert. „Mit unseren Berechnungen konnten wir erstmals zeigen, dass thermische Fluktuationen die Stabilität tatsächlich beeinflussen, speziell dann, wenn nicht nur die Teilchen selbst, sondern auch ihre Wanddicke im Verhältnis zum Radius sehr klein ausfallen“, so der Leiter des Bereichs „Theorie der Weichen Materie und Biophysik“.

Besonders stark sind die thermischen Effekte, wenn äußere Kräfte wirken, beispielsweise ein osmotischer Druck, der durch unterschiedlich hohe Stoffkonzentrationen innerhalb und außerhalb einer Zelle hervorgerufen wird. „Die thermisch bedingten Dellen und Knicke in der Oberfläche wirken wie eine Art Sollbruchstelle, die unter Druck schnell weiter anwächst. Das führt dazu, dass sich thermisch angeregte Kugeln um bis zu 20 Prozent leichter verformen und deutlich eher kollabieren, als durch die klassische Theorie vorhergesagt“, berichtet Mitautor Dr. Gerrit Vliegenthart vom Institute for Advanced Simulation (IAS) .

Betroffen von den thermischen Effekten sind unter anderem rote Blutkörperchen, deren Anteil im menschlichen Blut etwa 50 Prozent beträgt. Auf vergleichbare Werte bezüglich Größe und Elastizität kommen auch Polyelektrolyt-Kapseln, die unter anderem in der Druckindustrie als Farbkapseln eingesetzt werden. Derzeit werden sie zudem als Medikamenten-Träger weiterentwickelt, die medizinische Wirkstoffe gezielt über die Zeit abgeben oder zu bestimmten Organen transportieren können. Am stärksten wirken sich die thermischen Fluktuationen wahrscheinlich bei einem ziemlich exotischen Material aus: Mikrokapseln aus künstlicher Spinnenseide, entwickelt von Wissenschaftlern der TU München. Ihre Hülle ist extrem reißfest und mit einer Dicke von wenigen Nanometern konkurrenzlos dünn.

Welchen Einfluss thermische Fluktuationen auf die Formstabilität haben, lässt sich Gerhard Gompper zufolge übrigens auch mit einem einfachen Experiment nachvollziehen: „Man nehme ein Blatt Papier, lege es auf den Tisch, und versuche, diagonal entgegengesetzte Kanten gegeneinander zu verschieben, was wegen der hohen Schersteifigkeit kaum gelingt. Nun zerknüllt man das Papier, streicht es fast glatt und legt es wieder auf den Tisch. Die Kanten lassen sich nun deutlich besser gegeneinander verschieben als vorher, wobei die verbliebenen Knicke im Papier den thermischen Fluktuationen entsprechen.“
Originalpublikation:
Jayson Paulose, Gerard A.Vliegenthart, Gerhard Gompper, David R. Nelson
Fluctuating shells under pressure
PNAS 2012; published ahead of print November 12, 2012
DOI:10.1073/pnas.1212268109
Abstract: http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Ansprechpartner:
Dr. Gerrit Vliegenthart
Tel. 02461 61-6131
g.vliegenthart@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen
22.05.2015 | Forschungszentrum Jülich

nachricht Hochleistungsmikroskopie für Membranrezeptoren
22.05.2015 | Universitätsklinikum Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Bremse gegen epileptische Anfälle in Nervenzellen

In jedem Augenblick werden an Billiarden Synapsen unseres Gehirns chemische Signale erzeugt, die einzelnen Nervenzellen feuern dabei bis zu 1000 mal in der Sekunde. Wie ihnen diese Höchstleistung gelingt ohne dabei epileptische Anfälle zu erzeugen, haben Wissenschaftler am Leibniz-Institut für Molekulare Pharmakologie in Berlin nun ein Stück weit aufgeklärt. Das Ergebnis könnte zu einem besseren Verständnis nicht nur der Epilepsie, sondern auch anderer neurologischer Erkrankungen wie der Alzheimerschen Krankheit beitragen.

Mit jedem elektrischen Impuls schüttet eine Nervenzelle Neurotransmitter in den synaptischen Spalt aus und trägt so das Signal weiter. Sie hält dafür einen...

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klimawandel macht AllergikerInnen das Leben schwer

26.05.2015 | Biowissenschaften Chemie

Konzertierter Angriff auf das Rotavirus

26.05.2015 | Medizin Gesundheit

Raumbedienung mit PC, Tablet oder Smartphone

26.05.2015 | Informationstechnologie