Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln im Wärmekollaps

13.11.2012
Physiker simulieren erstmals Auswirkungen thermischer Fluktuationen
Ab welchem Druck fängt eine Hohlkugel an zu kollabieren? Dieses klassische Problem der Mechanik spielt auch beim Verständnis von Mikrokapseln eine Rolle, die Wirkstoffe im Körper gezielt zu einem Organ transportieren können. Dabei kommen thermische Fluktuationen hinzu, durch die sich die mikroskopischen Schalen unkontrolliert verformen. Unter Druck kollabieren sie deshalb eher als bisher vorhergesagt, wie Jülicher Wissenschaftler und ihre Partner an der Universität Harvard nun erstmals exakt berechnet haben. Die Ergebnisse wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

In den letzten Jahren wurden aus verschiedenartigen Materialien Kapseln mit einem Durchmesser von wenigen Mikro- oder Nanometern hergestellt, zum Beispiel aus elektrisch geladenen Polymeren, sogenannten Polyelektrolyten, oder aus Siliziumoxid. Ihre Dynamik und Interaktion ist entscheidend für mechanische Eigenschaften, die teilweise völlig neue Möglichkeiten bieten für Implantate, Prothesen oder maßgeschneiderte Träger für medizinische Wirkstoffe. Für die Entwicklung solcher Anwendungen ist es von Interesse, präzise vorhersagen zu können, wie sich die Kapseln unter Druck verhalten und ab welchem kritischen Wert es zum abrupten Kollaps kommt.

Die Deformation makroskopischer, starrer Kugelschalen wurde bereits vor über 50 Jahren von dem berühmten ungarisch-amerikanischen Mathematiker, Luftfahrt-Ingenieur und Physiker Theodore von Kármán sehr genau berechnet und beschrieben. Doch für den Nano- und Mikrometerbereich gilt dessen Formel nur begrenzt. „Aufgrund der thermischen Bewegung im angrenzenden Fluid sind mikroskopische Teilchen ständigen Stößen mit den umgebenden Molekülen und Atomen ausgesetzt, die sie abhängig von ihrer Elastizität und Größe unablässig verformen“, erläutert Prof. Gerhard Gompper vom Institut für Komplexe Systeme (ICS).

Die Jülicher Physiker haben gemeinsam mit Wissenschaftlern der Universität Harvard auf Superrechnern simuliert, wie sich die Form der winzigen Kugelschalen unter Einbeziehung der thermischen Fluktuationen verändert. „Mit unseren Berechnungen konnten wir erstmals zeigen, dass thermische Fluktuationen die Stabilität tatsächlich beeinflussen, speziell dann, wenn nicht nur die Teilchen selbst, sondern auch ihre Wanddicke im Verhältnis zum Radius sehr klein ausfallen“, so der Leiter des Bereichs „Theorie der Weichen Materie und Biophysik“.

Besonders stark sind die thermischen Effekte, wenn äußere Kräfte wirken, beispielsweise ein osmotischer Druck, der durch unterschiedlich hohe Stoffkonzentrationen innerhalb und außerhalb einer Zelle hervorgerufen wird. „Die thermisch bedingten Dellen und Knicke in der Oberfläche wirken wie eine Art Sollbruchstelle, die unter Druck schnell weiter anwächst. Das führt dazu, dass sich thermisch angeregte Kugeln um bis zu 20 Prozent leichter verformen und deutlich eher kollabieren, als durch die klassische Theorie vorhergesagt“, berichtet Mitautor Dr. Gerrit Vliegenthart vom Institute for Advanced Simulation (IAS) .

Betroffen von den thermischen Effekten sind unter anderem rote Blutkörperchen, deren Anteil im menschlichen Blut etwa 50 Prozent beträgt. Auf vergleichbare Werte bezüglich Größe und Elastizität kommen auch Polyelektrolyt-Kapseln, die unter anderem in der Druckindustrie als Farbkapseln eingesetzt werden. Derzeit werden sie zudem als Medikamenten-Träger weiterentwickelt, die medizinische Wirkstoffe gezielt über die Zeit abgeben oder zu bestimmten Organen transportieren können. Am stärksten wirken sich die thermischen Fluktuationen wahrscheinlich bei einem ziemlich exotischen Material aus: Mikrokapseln aus künstlicher Spinnenseide, entwickelt von Wissenschaftlern der TU München. Ihre Hülle ist extrem reißfest und mit einer Dicke von wenigen Nanometern konkurrenzlos dünn.

Welchen Einfluss thermische Fluktuationen auf die Formstabilität haben, lässt sich Gerhard Gompper zufolge übrigens auch mit einem einfachen Experiment nachvollziehen: „Man nehme ein Blatt Papier, lege es auf den Tisch, und versuche, diagonal entgegengesetzte Kanten gegeneinander zu verschieben, was wegen der hohen Schersteifigkeit kaum gelingt. Nun zerknüllt man das Papier, streicht es fast glatt und legt es wieder auf den Tisch. Die Kanten lassen sich nun deutlich besser gegeneinander verschieben als vorher, wobei die verbliebenen Knicke im Papier den thermischen Fluktuationen entsprechen.“
Originalpublikation:
Jayson Paulose, Gerard A.Vliegenthart, Gerhard Gompper, David R. Nelson
Fluctuating shells under pressure
PNAS 2012; published ahead of print November 12, 2012
DOI:10.1073/pnas.1212268109
Abstract: http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Ansprechpartner:
Dr. Gerrit Vliegenthart
Tel. 02461 61-6131
g.vliegenthart@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.pnas.org/content/early/2012/11/07/1212268109.abstract

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE