Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalle für sauberes Wasser

05.03.2012
Katalysatoren aus zwei verschiedenen Metallen können helfen, schädliche Nitrate im Trinkwasser abzubauen. Durch Forschungen an der TU Wien kann dieser Prozess nun erstmals im Detail verstanden werden.

Nitrate sind ein ernstes Problem für unser Trinkwasser. Durch Überdüngung in der Landwirtschaft kann ihre Konzentration im Wasser auf ein gesundheitsgefährdendes Niveau ansteigen. Nitrate können die Krebsrate erhöhen oder tödliche Herzfehler bei Kindern auslösen („Blue Baby Syndrome“).


Zwei verschiedene Metalle sorgen für sauberes Wasser. F. Aigner / TU Wien

Am Institut für Materialchemie der TU Wien wird eine Möglichkeit erforscht, die schädlichen Substanzen einfach und rasch wieder aus dem Wasser zu entfernen: Durch spezielle Katalysatoren sollen die Nitrate in molekularen Stickstoff und Wasser umgewandelt werden. Wie dieser Ablauf genau vor sich geht, konnte nun in spektroskopischen Untersuchungen untersucht werden.

Zwei Metalle gegen Nitrat

In der Trinkwasseraufbereitung oder in der Abwasserklärung werden Nitrate heute hauptsächlich auf biologische Weise aus dem Wasser entfernt: Man verwendet Bakterien, die das Nitrat abbauen. Allerdings brauchen diese Bakterien konstante Umgebungsbedingungen um zuverlässig arbeiten zu können. Karin Föttinger vom Institut für Materialchemie untersucht ganz andere Methoden der Wasser-Denitrierung: Sie verwendet bimetallische Katalysatoren – Kombinationen aus einem edlen und einem unedlen Metall.
„In Spanien gibt es bereits erste Wasseraufbereitungsanlagen, in denen diese Methode in großem Maßstab angewandt wird“, sagt Karin Föttinger. Allerdings ist man bei dieser Technologie bis heute eher auf Versuch und Irrtum angewiesen, viele Details der beteiligten chemischen Reaktionen werden nämlich jetzt erst genau untersucht.

Nitrat abbauen, N2 und Wasser erzeugen

Die Metalle bringt man als Nanopartikel auf einen Träger auf, um die aktive Oberfläche möglichst groß werden zu lassen. Verwendet wird Kupfer und ein Edelmetall – entweder Palladium oder Platin. „Wichtig ist, dass die beiden Metalle in engen Kontakt gebracht werden“, erklärt Föttinger, „am besten in Form einer Legierung.“ Das Kupfer wird aufoxidiert – es holt sich Sauerstoffatome des Nitrats (NO3), das damit zu Nitrit (NO2) umgewandelt wird. Gleichzeitig wird molekularer Wasserstoff (H2) dazugeleitet, der vom Edelmetall aktiviert wird. Dadurch wird das Nitrit schließlich am Edelmetall weiterreduziert.
„Die einzelnen Teilprozesse müssen so abgestimmt werden, dass als Endprodukt Stickstoff und Wasser entsteht“, erklärt Karin Föttinger. Der Prozess darf nicht an einem Punkt stehenbleiben, an dem noch schädliches Nitrit vorhanden ist, er darf aber auch nicht so weit getrieben werden, dass sich der Stickstoff am Ende mit zu viel Wasserstoff verbindet und Ammonium (NH4) entsteht.

Röntgenstrahlen und Infrarot

Mit verschiedenen Methoden untersuchte das Team um Karin Föttinger und Marie Curie Stipendiatin Noelia Barrabes am Institut für Materialchemie, wie diese Reaktionen im Detail ablaufen: Mit einem Infrarot-Spektrometer wurde gemessen, welche Spezies von Stickstoffverbindungen an der Katalysatoroberfläche vorliegen. Um die Rolle des Kupfers zu untersuchen, führte das TU-Team hochauflösende Röntgenabsorptions-Messungen am Paul Scherrer Institut in der Schweiz durch. Wichtig ist, in welcher Form das Kupfer während des Prozesses vorliegt: Es kann als reines Kupfer (Cu), oxidiert (Cu2O oder CuO) oder als Legierung mit Platin oder Palladium vorkommen. „Wir konnten uns direkt unter Reaktionsbedingungen ansehen, in welchen Verbindungen das Kupfer zu den bestimmten Zeitpunkten während der Reaktion vorliegt, diese quantifizieren und mit der gleichzeitig mitgemessenen katalytischen Aktivität korrelieren“, berichtet Karin Föttinger. „Dadurch haben wir nun einen ersten Beweis, dass metallisches Kupfer tatsächlich die entscheidende Rolle für den ersten limitierenden Schritt bei diesem Katalyse-Prozess spielt.“

Durch diese Untersuchungen lässt sich nun auch erklären, warum Palladium einen besseren Erfolg bringt als Platin: „Das oxidierte Kupfer muss möglichst rasch und effizient wieder zum aktiven metallischen Zustand regeneriert werden. Im Palladium kann Wasserstoff auch im Inneren des Kristallgitters eingelagert sein“, sagt Karin Föttinger. „Dieses Hydrid kann dann helfen, Kupfer zu regenerieren.“ Wenn man die Katalyse-Prozesse im Detail versteht, können sich die Methoden weiter verbessern lassen – für eine einfache und sichere Aufbereitung von sauberem, gesunden Trinkwasser.

Nähere Information:
Dr. Karin Föttinger
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165110
karin.foettinger@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

„Materials & Matter“ und „Energy & Environment“ sind – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies sowie Information & Communication Technology – Forschungsschwerpunkte der Technischen Universität Wien. Forschung an neuartigen Materialien hilft dabei, Umweltprobleme zu lösen.

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://blogs.rsc.org/cy/2012/01/27/hot-article-catalytic-clean-up/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie