Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalle für sauberes Wasser

05.03.2012
Katalysatoren aus zwei verschiedenen Metallen können helfen, schädliche Nitrate im Trinkwasser abzubauen. Durch Forschungen an der TU Wien kann dieser Prozess nun erstmals im Detail verstanden werden.

Nitrate sind ein ernstes Problem für unser Trinkwasser. Durch Überdüngung in der Landwirtschaft kann ihre Konzentration im Wasser auf ein gesundheitsgefährdendes Niveau ansteigen. Nitrate können die Krebsrate erhöhen oder tödliche Herzfehler bei Kindern auslösen („Blue Baby Syndrome“).


Zwei verschiedene Metalle sorgen für sauberes Wasser. F. Aigner / TU Wien

Am Institut für Materialchemie der TU Wien wird eine Möglichkeit erforscht, die schädlichen Substanzen einfach und rasch wieder aus dem Wasser zu entfernen: Durch spezielle Katalysatoren sollen die Nitrate in molekularen Stickstoff und Wasser umgewandelt werden. Wie dieser Ablauf genau vor sich geht, konnte nun in spektroskopischen Untersuchungen untersucht werden.

Zwei Metalle gegen Nitrat

In der Trinkwasseraufbereitung oder in der Abwasserklärung werden Nitrate heute hauptsächlich auf biologische Weise aus dem Wasser entfernt: Man verwendet Bakterien, die das Nitrat abbauen. Allerdings brauchen diese Bakterien konstante Umgebungsbedingungen um zuverlässig arbeiten zu können. Karin Föttinger vom Institut für Materialchemie untersucht ganz andere Methoden der Wasser-Denitrierung: Sie verwendet bimetallische Katalysatoren – Kombinationen aus einem edlen und einem unedlen Metall.
„In Spanien gibt es bereits erste Wasseraufbereitungsanlagen, in denen diese Methode in großem Maßstab angewandt wird“, sagt Karin Föttinger. Allerdings ist man bei dieser Technologie bis heute eher auf Versuch und Irrtum angewiesen, viele Details der beteiligten chemischen Reaktionen werden nämlich jetzt erst genau untersucht.

Nitrat abbauen, N2 und Wasser erzeugen

Die Metalle bringt man als Nanopartikel auf einen Träger auf, um die aktive Oberfläche möglichst groß werden zu lassen. Verwendet wird Kupfer und ein Edelmetall – entweder Palladium oder Platin. „Wichtig ist, dass die beiden Metalle in engen Kontakt gebracht werden“, erklärt Föttinger, „am besten in Form einer Legierung.“ Das Kupfer wird aufoxidiert – es holt sich Sauerstoffatome des Nitrats (NO3), das damit zu Nitrit (NO2) umgewandelt wird. Gleichzeitig wird molekularer Wasserstoff (H2) dazugeleitet, der vom Edelmetall aktiviert wird. Dadurch wird das Nitrit schließlich am Edelmetall weiterreduziert.
„Die einzelnen Teilprozesse müssen so abgestimmt werden, dass als Endprodukt Stickstoff und Wasser entsteht“, erklärt Karin Föttinger. Der Prozess darf nicht an einem Punkt stehenbleiben, an dem noch schädliches Nitrit vorhanden ist, er darf aber auch nicht so weit getrieben werden, dass sich der Stickstoff am Ende mit zu viel Wasserstoff verbindet und Ammonium (NH4) entsteht.

Röntgenstrahlen und Infrarot

Mit verschiedenen Methoden untersuchte das Team um Karin Föttinger und Marie Curie Stipendiatin Noelia Barrabes am Institut für Materialchemie, wie diese Reaktionen im Detail ablaufen: Mit einem Infrarot-Spektrometer wurde gemessen, welche Spezies von Stickstoffverbindungen an der Katalysatoroberfläche vorliegen. Um die Rolle des Kupfers zu untersuchen, führte das TU-Team hochauflösende Röntgenabsorptions-Messungen am Paul Scherrer Institut in der Schweiz durch. Wichtig ist, in welcher Form das Kupfer während des Prozesses vorliegt: Es kann als reines Kupfer (Cu), oxidiert (Cu2O oder CuO) oder als Legierung mit Platin oder Palladium vorkommen. „Wir konnten uns direkt unter Reaktionsbedingungen ansehen, in welchen Verbindungen das Kupfer zu den bestimmten Zeitpunkten während der Reaktion vorliegt, diese quantifizieren und mit der gleichzeitig mitgemessenen katalytischen Aktivität korrelieren“, berichtet Karin Föttinger. „Dadurch haben wir nun einen ersten Beweis, dass metallisches Kupfer tatsächlich die entscheidende Rolle für den ersten limitierenden Schritt bei diesem Katalyse-Prozess spielt.“

Durch diese Untersuchungen lässt sich nun auch erklären, warum Palladium einen besseren Erfolg bringt als Platin: „Das oxidierte Kupfer muss möglichst rasch und effizient wieder zum aktiven metallischen Zustand regeneriert werden. Im Palladium kann Wasserstoff auch im Inneren des Kristallgitters eingelagert sein“, sagt Karin Föttinger. „Dieses Hydrid kann dann helfen, Kupfer zu regenerieren.“ Wenn man die Katalyse-Prozesse im Detail versteht, können sich die Methoden weiter verbessern lassen – für eine einfache und sichere Aufbereitung von sauberem, gesunden Trinkwasser.

Nähere Information:
Dr. Karin Föttinger
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165110
karin.foettinger@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

„Materials & Matter“ und „Energy & Environment“ sind – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies sowie Information & Communication Technology – Forschungsschwerpunkte der Technischen Universität Wien. Forschung an neuartigen Materialien hilft dabei, Umweltprobleme zu lösen.

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://blogs.rsc.org/cy/2012/01/27/hot-article-catalytic-clean-up/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie