Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalle für sauberes Wasser

05.03.2012
Katalysatoren aus zwei verschiedenen Metallen können helfen, schädliche Nitrate im Trinkwasser abzubauen. Durch Forschungen an der TU Wien kann dieser Prozess nun erstmals im Detail verstanden werden.

Nitrate sind ein ernstes Problem für unser Trinkwasser. Durch Überdüngung in der Landwirtschaft kann ihre Konzentration im Wasser auf ein gesundheitsgefährdendes Niveau ansteigen. Nitrate können die Krebsrate erhöhen oder tödliche Herzfehler bei Kindern auslösen („Blue Baby Syndrome“).


Zwei verschiedene Metalle sorgen für sauberes Wasser. F. Aigner / TU Wien

Am Institut für Materialchemie der TU Wien wird eine Möglichkeit erforscht, die schädlichen Substanzen einfach und rasch wieder aus dem Wasser zu entfernen: Durch spezielle Katalysatoren sollen die Nitrate in molekularen Stickstoff und Wasser umgewandelt werden. Wie dieser Ablauf genau vor sich geht, konnte nun in spektroskopischen Untersuchungen untersucht werden.

Zwei Metalle gegen Nitrat

In der Trinkwasseraufbereitung oder in der Abwasserklärung werden Nitrate heute hauptsächlich auf biologische Weise aus dem Wasser entfernt: Man verwendet Bakterien, die das Nitrat abbauen. Allerdings brauchen diese Bakterien konstante Umgebungsbedingungen um zuverlässig arbeiten zu können. Karin Föttinger vom Institut für Materialchemie untersucht ganz andere Methoden der Wasser-Denitrierung: Sie verwendet bimetallische Katalysatoren – Kombinationen aus einem edlen und einem unedlen Metall.
„In Spanien gibt es bereits erste Wasseraufbereitungsanlagen, in denen diese Methode in großem Maßstab angewandt wird“, sagt Karin Föttinger. Allerdings ist man bei dieser Technologie bis heute eher auf Versuch und Irrtum angewiesen, viele Details der beteiligten chemischen Reaktionen werden nämlich jetzt erst genau untersucht.

Nitrat abbauen, N2 und Wasser erzeugen

Die Metalle bringt man als Nanopartikel auf einen Träger auf, um die aktive Oberfläche möglichst groß werden zu lassen. Verwendet wird Kupfer und ein Edelmetall – entweder Palladium oder Platin. „Wichtig ist, dass die beiden Metalle in engen Kontakt gebracht werden“, erklärt Föttinger, „am besten in Form einer Legierung.“ Das Kupfer wird aufoxidiert – es holt sich Sauerstoffatome des Nitrats (NO3), das damit zu Nitrit (NO2) umgewandelt wird. Gleichzeitig wird molekularer Wasserstoff (H2) dazugeleitet, der vom Edelmetall aktiviert wird. Dadurch wird das Nitrit schließlich am Edelmetall weiterreduziert.
„Die einzelnen Teilprozesse müssen so abgestimmt werden, dass als Endprodukt Stickstoff und Wasser entsteht“, erklärt Karin Föttinger. Der Prozess darf nicht an einem Punkt stehenbleiben, an dem noch schädliches Nitrit vorhanden ist, er darf aber auch nicht so weit getrieben werden, dass sich der Stickstoff am Ende mit zu viel Wasserstoff verbindet und Ammonium (NH4) entsteht.

Röntgenstrahlen und Infrarot

Mit verschiedenen Methoden untersuchte das Team um Karin Föttinger und Marie Curie Stipendiatin Noelia Barrabes am Institut für Materialchemie, wie diese Reaktionen im Detail ablaufen: Mit einem Infrarot-Spektrometer wurde gemessen, welche Spezies von Stickstoffverbindungen an der Katalysatoroberfläche vorliegen. Um die Rolle des Kupfers zu untersuchen, führte das TU-Team hochauflösende Röntgenabsorptions-Messungen am Paul Scherrer Institut in der Schweiz durch. Wichtig ist, in welcher Form das Kupfer während des Prozesses vorliegt: Es kann als reines Kupfer (Cu), oxidiert (Cu2O oder CuO) oder als Legierung mit Platin oder Palladium vorkommen. „Wir konnten uns direkt unter Reaktionsbedingungen ansehen, in welchen Verbindungen das Kupfer zu den bestimmten Zeitpunkten während der Reaktion vorliegt, diese quantifizieren und mit der gleichzeitig mitgemessenen katalytischen Aktivität korrelieren“, berichtet Karin Föttinger. „Dadurch haben wir nun einen ersten Beweis, dass metallisches Kupfer tatsächlich die entscheidende Rolle für den ersten limitierenden Schritt bei diesem Katalyse-Prozess spielt.“

Durch diese Untersuchungen lässt sich nun auch erklären, warum Palladium einen besseren Erfolg bringt als Platin: „Das oxidierte Kupfer muss möglichst rasch und effizient wieder zum aktiven metallischen Zustand regeneriert werden. Im Palladium kann Wasserstoff auch im Inneren des Kristallgitters eingelagert sein“, sagt Karin Föttinger. „Dieses Hydrid kann dann helfen, Kupfer zu regenerieren.“ Wenn man die Katalyse-Prozesse im Detail versteht, können sich die Methoden weiter verbessern lassen – für eine einfache und sichere Aufbereitung von sauberem, gesunden Trinkwasser.

Nähere Information:
Dr. Karin Föttinger
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165110
karin.foettinger@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

„Materials & Matter“ und „Energy & Environment“ sind – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies sowie Information & Communication Technology – Forschungsschwerpunkte der Technischen Universität Wien. Forschung an neuartigen Materialien hilft dabei, Umweltprobleme zu lösen.

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://blogs.rsc.org/cy/2012/01/27/hot-article-catalytic-clean-up/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt

24.05.2018 | Medizin Gesundheit

Konventionelle Antibiotika-Therapie ergänzen

24.05.2018 | Biowissenschaften Chemie

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

24.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics