Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messungen unter Big-Bang-Bedingungen bestätigen Lithium-Problem

25.08.2014

Die Astrophysik hat ein hartnäckiges Problem und das heißt Lithium: Das Element kommt nicht in den Mengen in Sternen vor, die rechnerisch für die Lithium-Entstehung nach dem Big Bang vorhergesagt werden.

Doch die Berechnungen stimmen – das konnte jetzt erstmals auch experimentell im Untertagelabor im italienischen Gran-Sasso-Bergmassiv bestätigt werden. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) untersuchten dort in einem internationalen Team, wieviel Lithium unter Urknall-Bedingungen entsteht. Die Ergebnisse wurden in der Fachzeitschrift Physical Review Letters veröffentlicht.


Michael Anders neben dem LUNA-Beschleuniger.

HZDR/M.Anders

Lithium ist neben Wasserstoff und Helium eines der drei Elemente, die nicht erst innerhalb von Sternen erzeugt werden. Stattdessen – so die Theorie – sind sie schon früh durch die „primordiale Nukleosynthese“ entstanden. Das heißt: Im nur wenige Minuten alten Universum haben sich Neutronen und Protonen zu den Kernen der ersten drei Elemente verbunden.

Am Laboratory for Underground Nuclear Astrophysics (LUNA) wurde die Kernentstehung von Lithium nun von einem internationalen Forscherteam nachgestellt. Eine führende Rolle im Team nahm Michael Anders ein, der im vergangenen Jahr an der TU Dresden und am HZDR zu dem Thema promoviert hat. Im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Projekts wurde er dabei von Dr. Daniel Bemmerer, Gruppenleiter am HZDR, betreut.

In dem italienischen Untertagelabor feuerten die Wissenschaftler Heliumkerne auf schweren Wasserstoff (sogenanntes Deuterium), um Energien wie kurz nach dem Urknall zu erreichen. So sollte gemessen werden, wieviel Lithium unter Bedingungen entsteht, die denen im Frühstadium des Universums ähneln. Das Ergebnis des Experiments: Die Daten bestätigten die theoretischen Vorhersagen, die mit den beobachteten Lithium-Konzentrationen im Universum nicht vereinbar sind.

„Zum ersten Mal überhaupt konnte mit unserem Experiment die Lithium-6-Produktion in einem Teil des Urknall-Energiebereichs untersucht werden“, erklärt Daniel Bemmerer. Lithium-6 (drei Neutronen, drei Protonen) ist eines der beiden stabilen Isotope des Elements. Die Entstehung von Lithium-7, welches über ein zusätzliches Neutron verfügt, wurde bereits 2006 von Bemmerer am LUNA untersucht.

Mit den neuen Ergebnissen bleibt das Lithium-Problem somit eine harte Nuss: Einerseits sprechen nun alle Labor-Ergebnisse der Astrophysiker dafür, dass die Theorie der primordialen Nukleosynthese korrekt ist. Andererseits zeigen viele Beobachtungen von Astronomen, dass die ältesten Sterne in unserer Milchstraße nur halb so viel Lithium-7 enthalten wie vorhergesagt.

Aufsehenerregende Berichte von schwedischen Forschern, die in solchen Sternen außerdem deutlich mehr Lithium-6 entdeckten als vorhergesagt, müssen wohl auch aufgrund der neuen LUNA-Daten noch einmal überprüft werden. Bemmerer: „Sollten in Zukunft wieder ungewöhnliche Lithium-Konzentrationen beobachtet werden, wissen wir dank der neuen Messung, dass die Erklärung nicht in der Urknall-Nukleosynthese liegen kann.“

Weitere Forschung bald im neuen Felsenkeller-Labor in Dresden

Wichtig für die Untersuchungen war auch die besondere Lage von LUNA: Im Bergmassiv Gran Sasso d’Italia halten 1.400 Meter Felsgestein störende kosmische Strahlung fern. Zusätzlich ist das Labor in eine Bleihülle gekleidet. Nur durch eine solch gute Abschirmung können die seltenen Wechselwirkungen zwischen den Kernen präzise erfasst werden. Schon im nächsten Jahr soll aber auch in Dresden ähnliche Forschung möglich sein.

Dann wollen die Technische Universität Dresden und das Helmholtz-Zentrum Dresden-Rossendorf das Beschleunigerlabor „Felsenkeller“ in Betrieb nehmen. In dem ehemaligen Brauerei-Keller schirmen zwar nur 45 Meter Fels die natürliche Strahlung ab, dies reiche laut Bemmerer vom HZDR für viele Messungen aber bereits aus. Zudem habe das neue Labor einen mehr als zwölfmal so starken Teilchenbeschleuniger zu bieten: „Dort können wir dann unsere Experimente erweitern und die Entstehung der Elemente in höheren Energiebereichen erforschen.“

Weitere Informationen:

https://www.hzdr.de/presse/lithium

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics