Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messungen unter Big-Bang-Bedingungen bestätigen Lithium-Problem

25.08.2014

Die Astrophysik hat ein hartnäckiges Problem und das heißt Lithium: Das Element kommt nicht in den Mengen in Sternen vor, die rechnerisch für die Lithium-Entstehung nach dem Big Bang vorhergesagt werden.

Doch die Berechnungen stimmen – das konnte jetzt erstmals auch experimentell im Untertagelabor im italienischen Gran-Sasso-Bergmassiv bestätigt werden. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) untersuchten dort in einem internationalen Team, wieviel Lithium unter Urknall-Bedingungen entsteht. Die Ergebnisse wurden in der Fachzeitschrift Physical Review Letters veröffentlicht.


Michael Anders neben dem LUNA-Beschleuniger.

HZDR/M.Anders

Lithium ist neben Wasserstoff und Helium eines der drei Elemente, die nicht erst innerhalb von Sternen erzeugt werden. Stattdessen – so die Theorie – sind sie schon früh durch die „primordiale Nukleosynthese“ entstanden. Das heißt: Im nur wenige Minuten alten Universum haben sich Neutronen und Protonen zu den Kernen der ersten drei Elemente verbunden.

Am Laboratory for Underground Nuclear Astrophysics (LUNA) wurde die Kernentstehung von Lithium nun von einem internationalen Forscherteam nachgestellt. Eine führende Rolle im Team nahm Michael Anders ein, der im vergangenen Jahr an der TU Dresden und am HZDR zu dem Thema promoviert hat. Im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Projekts wurde er dabei von Dr. Daniel Bemmerer, Gruppenleiter am HZDR, betreut.

In dem italienischen Untertagelabor feuerten die Wissenschaftler Heliumkerne auf schweren Wasserstoff (sogenanntes Deuterium), um Energien wie kurz nach dem Urknall zu erreichen. So sollte gemessen werden, wieviel Lithium unter Bedingungen entsteht, die denen im Frühstadium des Universums ähneln. Das Ergebnis des Experiments: Die Daten bestätigten die theoretischen Vorhersagen, die mit den beobachteten Lithium-Konzentrationen im Universum nicht vereinbar sind.

„Zum ersten Mal überhaupt konnte mit unserem Experiment die Lithium-6-Produktion in einem Teil des Urknall-Energiebereichs untersucht werden“, erklärt Daniel Bemmerer. Lithium-6 (drei Neutronen, drei Protonen) ist eines der beiden stabilen Isotope des Elements. Die Entstehung von Lithium-7, welches über ein zusätzliches Neutron verfügt, wurde bereits 2006 von Bemmerer am LUNA untersucht.

Mit den neuen Ergebnissen bleibt das Lithium-Problem somit eine harte Nuss: Einerseits sprechen nun alle Labor-Ergebnisse der Astrophysiker dafür, dass die Theorie der primordialen Nukleosynthese korrekt ist. Andererseits zeigen viele Beobachtungen von Astronomen, dass die ältesten Sterne in unserer Milchstraße nur halb so viel Lithium-7 enthalten wie vorhergesagt.

Aufsehenerregende Berichte von schwedischen Forschern, die in solchen Sternen außerdem deutlich mehr Lithium-6 entdeckten als vorhergesagt, müssen wohl auch aufgrund der neuen LUNA-Daten noch einmal überprüft werden. Bemmerer: „Sollten in Zukunft wieder ungewöhnliche Lithium-Konzentrationen beobachtet werden, wissen wir dank der neuen Messung, dass die Erklärung nicht in der Urknall-Nukleosynthese liegen kann.“

Weitere Forschung bald im neuen Felsenkeller-Labor in Dresden

Wichtig für die Untersuchungen war auch die besondere Lage von LUNA: Im Bergmassiv Gran Sasso d’Italia halten 1.400 Meter Felsgestein störende kosmische Strahlung fern. Zusätzlich ist das Labor in eine Bleihülle gekleidet. Nur durch eine solch gute Abschirmung können die seltenen Wechselwirkungen zwischen den Kernen präzise erfasst werden. Schon im nächsten Jahr soll aber auch in Dresden ähnliche Forschung möglich sein.

Dann wollen die Technische Universität Dresden und das Helmholtz-Zentrum Dresden-Rossendorf das Beschleunigerlabor „Felsenkeller“ in Betrieb nehmen. In dem ehemaligen Brauerei-Keller schirmen zwar nur 45 Meter Fels die natürliche Strahlung ab, dies reiche laut Bemmerer vom HZDR für viele Messungen aber bereits aus. Zudem habe das neue Labor einen mehr als zwölfmal so starken Teilchenbeschleuniger zu bieten: „Dort können wir dann unsere Experimente erweitern und die Entstehung der Elemente in höheren Energiebereichen erforschen.“

Weitere Informationen:

https://www.hzdr.de/presse/lithium

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften