Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messungen an der TU Wien führen zu einem tieferen Verständnis der quantenmechanischen Unschärfe

16.01.2012
Schärfer als Heisenberg erlaubt

Sie ist wohl das berühmteste Fundament der Quantenphysik - Heisenbergs Unschärferelation. Sie besagt, dass man nicht alle Eigenschaften von Quantenteilchen gleichzeitig mit beliebiger Genauigkeit bestimmen kann. Bisher wurde das oft dadurch begründet, dass eine Messung das Quantenteilchen eben notgedrungen verändert und dadurch andere Messungen verfälscht – doch ganz so einfach ist die Sache nicht.

Neutronen-Experimente von Professor Yuji Hasegawa und seinem Team an der TU Wien konnten nun verschiedene Beiträge zur Quanten-Unsicherheit aufschlüsseln und damit eine Theorie japanischer Kollegen bestätigen: Der Einfluss der Messung auf das Quanten-System ist nicht immer der Grund für die Mess-Unsicherheit. Heisenbergs Argumente für die Quanten-Unschärfe müssen also neu überdacht werden – die Unschärferelation selbst bleibt freilich bestehen. Die Ergebnisse wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Ort oder Impuls – doch niemals beides

Dass sich in der Quantenphysik bestimmte Größen nicht gleichzeitig messen lassen ist unbestritten. Die Frage ist, wie man das interpretieren muss. „Bis heute hört man oft von Heisenbergs berühmten Gedankenexperiment, in dem die Position eines Elektrons mit Licht gemessen werden soll“, sagt Jacqueline Erhart vom Atominstitut der TU Wien. Um die Position eines Teilchens sehr genau bestimmen zu können muss man Licht mit sehr kurzer Wellenlänge (also großer Energie) verwenden. Das bedeutet aber auch, dass ein starker Impuls auf das Teilchen übertragen wird: Das Teilchen erhält durch die Messung einen Schubs. Je genauer man den Ort misst umso dramatischer verändert man den Impuls des Teilchens. Ort und Impuls, so argumentierte Heisenberg, sind daher nicht gleichzeitig exakt messbar. Dasselbe gilt in der Quantenphysik für viele andere Messgrößen-Paare. Heisenberg war der Meinung, dass in solchen Fällen eine genauere Messung der einen Messgröße immer eine Störung der zweiten Messgröße verursacht. Das Produkt aus Ungenauigkeit der ersten Messung und Störung der zweiten Messung, so meinte er, kann eine gewisse Grenze nicht unterschreiten.

Die Natur ist unscharf – auch ohne Messung

Dass eine Messung das Quantensystem stört und damit das Ergebnis einer zweiten Messung verfälscht ist aber gar nicht der Kern des Problems. „Solche Störungen gibt es schließlich auch in der klassischen Physik, das hat mit Quantentheorie zunächst noch nichts zu tun“, erläutert Stephan Sponar (TU Wien). Die Unsicherheit liegt in der Quantennatur des Teilchens selbst: Schon lange weiß man, dass man sich in der Quantenphysik ein Teilchen eben nicht mehr als punktförmiges Objekt vorstellen kann, das eine eindeutig bestimmte Geschwindigkeit und eine klare Bewegungsrichtung hat. Stattdessen verhält sich ein Teilchen wie eine Welle – und bei Wellen lassen sich Aufenthaltsort und Impuls eben nicht gleichzeitig beliebig genau definieren. Man könnte sagen: Das Teilchen "weiß" selbst nicht, wo es sich genau befindet und wie schnell es ist – ganz unabhängig davon, ob es gemessen wird oder nicht.

Berücksichtigung des Messvorgangs – neue Unschärferelation

„Um diese prinzipielle Unbestimmtheit und die zusätzliche Störung durch einen Messvorgang korrekt zu beschreiben, kommt man nicht umhin, das Teilchen gemeinsam mit dem Messapparat im quantenmechanischen Formalismus zu beschreiben“, erklärt Georg Sulyok (TU Wien). Genau das gelang dem japanischen Physiker Professor Masanao Ozawa 2003 und führte auf eine verallgemeinerte Unschärferelation: In seinen Gleichungen steckten unterschiedliche „Sorten“ von Unschärfe: Einerseits die Unsicherheit, die durch die Messung entsteht, weil sie in den Zustand des Systems eingreift und damit die andere Messung verfälscht. Das ist die Unsicherheit von Heisenbergs Ort-Impuls-Beispiel. Andererseits beinhalten die Gleichungen auch die grundlegende Quanten-Unsicherheit, die unabhängig von der Messung in jedem Quanten-System vorhanden ist.

Neutronen und ihre Spins

Durch ein ausgeklügeltes Experiment-Design konnten die unterschiedlichen Beiträge am Atominstitut der TU Wien nun gemessen und voneinander unterschieden werden. Dabei wurden nicht Ort und Impuls eines Teilchens untersucht, sondern die Spins von Neutronen. Der Spin in X-Richtung und der Spin in Y-Richtung kann nicht gleichzeitig genau gemessen werden – sie erfüllen eine Unschärferelation, ähnlich wie Ort und Impuls. Durch magnetische Felder wurde der Spin der Neutronen aus dem Reaktor des Atominstituts in die richtige räumliche Orientierung gebracht, ihr Spin wurde in zwei aufeinander folgenden Messungen bestimmt. Durch kontrollierte Manipulationen des Messapparats konnte statistisch ermittelt werden, wie die unterschiedlichen Quellen der Unschärfe miteinander zusammenhängen.

Einfluss der Messung beliebig klein

„Nach wie vor gilt: Je exakter, die erste Messung durchgeführt wird, desto stärker wird die zweite Messung gestört – doch kann das Produkt aus Ungenauigkeit und Störung beliebig klein gemacht werden, auch kleiner, als Heisenbergs ursprüngliche Formulierung der Unschärferelation erlaubt“, sagt Professor Yuji Hasegawa.

Doch auch wenn sich die Messungen kaum beeinflussen - unscharf bleibt die Quantenphysik trotzdem: „Die Unschärferelation ist natürlich nach wie vor richtig“, versichert das Forschungsteam. Man sollte nur mit seiner Begründung vorsichtig sein: „Die Unschärfe kommt nicht vom störenden Einfluss der Messung auf das Quanten-Objekt, sondern von der Quanten-Natur der Teilchen selbst.“

Originalpublikation: Nature Physics DOI: 10.1038/NPHYS2194

Rückfragehinweise:

Prof. Yuji Hasegawa
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
hasegawa@ati.ac.at
Dipl.-Ing. Jacqueline Erhart
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141459
jacqueline.erhart@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://ati.tuwien.ac.at/forschungsbereiche/nqp/forschung/unschaerferelation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie