Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messungen an der TU Wien führen zu einem tieferen Verständnis der quantenmechanischen Unschärfe

16.01.2012
Schärfer als Heisenberg erlaubt

Sie ist wohl das berühmteste Fundament der Quantenphysik - Heisenbergs Unschärferelation. Sie besagt, dass man nicht alle Eigenschaften von Quantenteilchen gleichzeitig mit beliebiger Genauigkeit bestimmen kann. Bisher wurde das oft dadurch begründet, dass eine Messung das Quantenteilchen eben notgedrungen verändert und dadurch andere Messungen verfälscht – doch ganz so einfach ist die Sache nicht.

Neutronen-Experimente von Professor Yuji Hasegawa und seinem Team an der TU Wien konnten nun verschiedene Beiträge zur Quanten-Unsicherheit aufschlüsseln und damit eine Theorie japanischer Kollegen bestätigen: Der Einfluss der Messung auf das Quanten-System ist nicht immer der Grund für die Mess-Unsicherheit. Heisenbergs Argumente für die Quanten-Unschärfe müssen also neu überdacht werden – die Unschärferelation selbst bleibt freilich bestehen. Die Ergebnisse wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Ort oder Impuls – doch niemals beides

Dass sich in der Quantenphysik bestimmte Größen nicht gleichzeitig messen lassen ist unbestritten. Die Frage ist, wie man das interpretieren muss. „Bis heute hört man oft von Heisenbergs berühmten Gedankenexperiment, in dem die Position eines Elektrons mit Licht gemessen werden soll“, sagt Jacqueline Erhart vom Atominstitut der TU Wien. Um die Position eines Teilchens sehr genau bestimmen zu können muss man Licht mit sehr kurzer Wellenlänge (also großer Energie) verwenden. Das bedeutet aber auch, dass ein starker Impuls auf das Teilchen übertragen wird: Das Teilchen erhält durch die Messung einen Schubs. Je genauer man den Ort misst umso dramatischer verändert man den Impuls des Teilchens. Ort und Impuls, so argumentierte Heisenberg, sind daher nicht gleichzeitig exakt messbar. Dasselbe gilt in der Quantenphysik für viele andere Messgrößen-Paare. Heisenberg war der Meinung, dass in solchen Fällen eine genauere Messung der einen Messgröße immer eine Störung der zweiten Messgröße verursacht. Das Produkt aus Ungenauigkeit der ersten Messung und Störung der zweiten Messung, so meinte er, kann eine gewisse Grenze nicht unterschreiten.

Die Natur ist unscharf – auch ohne Messung

Dass eine Messung das Quantensystem stört und damit das Ergebnis einer zweiten Messung verfälscht ist aber gar nicht der Kern des Problems. „Solche Störungen gibt es schließlich auch in der klassischen Physik, das hat mit Quantentheorie zunächst noch nichts zu tun“, erläutert Stephan Sponar (TU Wien). Die Unsicherheit liegt in der Quantennatur des Teilchens selbst: Schon lange weiß man, dass man sich in der Quantenphysik ein Teilchen eben nicht mehr als punktförmiges Objekt vorstellen kann, das eine eindeutig bestimmte Geschwindigkeit und eine klare Bewegungsrichtung hat. Stattdessen verhält sich ein Teilchen wie eine Welle – und bei Wellen lassen sich Aufenthaltsort und Impuls eben nicht gleichzeitig beliebig genau definieren. Man könnte sagen: Das Teilchen "weiß" selbst nicht, wo es sich genau befindet und wie schnell es ist – ganz unabhängig davon, ob es gemessen wird oder nicht.

Berücksichtigung des Messvorgangs – neue Unschärferelation

„Um diese prinzipielle Unbestimmtheit und die zusätzliche Störung durch einen Messvorgang korrekt zu beschreiben, kommt man nicht umhin, das Teilchen gemeinsam mit dem Messapparat im quantenmechanischen Formalismus zu beschreiben“, erklärt Georg Sulyok (TU Wien). Genau das gelang dem japanischen Physiker Professor Masanao Ozawa 2003 und führte auf eine verallgemeinerte Unschärferelation: In seinen Gleichungen steckten unterschiedliche „Sorten“ von Unschärfe: Einerseits die Unsicherheit, die durch die Messung entsteht, weil sie in den Zustand des Systems eingreift und damit die andere Messung verfälscht. Das ist die Unsicherheit von Heisenbergs Ort-Impuls-Beispiel. Andererseits beinhalten die Gleichungen auch die grundlegende Quanten-Unsicherheit, die unabhängig von der Messung in jedem Quanten-System vorhanden ist.

Neutronen und ihre Spins

Durch ein ausgeklügeltes Experiment-Design konnten die unterschiedlichen Beiträge am Atominstitut der TU Wien nun gemessen und voneinander unterschieden werden. Dabei wurden nicht Ort und Impuls eines Teilchens untersucht, sondern die Spins von Neutronen. Der Spin in X-Richtung und der Spin in Y-Richtung kann nicht gleichzeitig genau gemessen werden – sie erfüllen eine Unschärferelation, ähnlich wie Ort und Impuls. Durch magnetische Felder wurde der Spin der Neutronen aus dem Reaktor des Atominstituts in die richtige räumliche Orientierung gebracht, ihr Spin wurde in zwei aufeinander folgenden Messungen bestimmt. Durch kontrollierte Manipulationen des Messapparats konnte statistisch ermittelt werden, wie die unterschiedlichen Quellen der Unschärfe miteinander zusammenhängen.

Einfluss der Messung beliebig klein

„Nach wie vor gilt: Je exakter, die erste Messung durchgeführt wird, desto stärker wird die zweite Messung gestört – doch kann das Produkt aus Ungenauigkeit und Störung beliebig klein gemacht werden, auch kleiner, als Heisenbergs ursprüngliche Formulierung der Unschärferelation erlaubt“, sagt Professor Yuji Hasegawa.

Doch auch wenn sich die Messungen kaum beeinflussen - unscharf bleibt die Quantenphysik trotzdem: „Die Unschärferelation ist natürlich nach wie vor richtig“, versichert das Forschungsteam. Man sollte nur mit seiner Begründung vorsichtig sein: „Die Unschärfe kommt nicht vom störenden Einfluss der Messung auf das Quanten-Objekt, sondern von der Quanten-Natur der Teilchen selbst.“

Originalpublikation: Nature Physics DOI: 10.1038/NPHYS2194

Rückfragehinweise:

Prof. Yuji Hasegawa
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
hasegawa@ati.ac.at
Dipl.-Ing. Jacqueline Erhart
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141459
jacqueline.erhart@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://ati.tuwien.ac.at/forschungsbereiche/nqp/forschung/unschaerferelation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften