Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messungen an der TU Wien führen zu einem tieferen Verständnis der quantenmechanischen Unschärfe

16.01.2012
Schärfer als Heisenberg erlaubt

Sie ist wohl das berühmteste Fundament der Quantenphysik - Heisenbergs Unschärferelation. Sie besagt, dass man nicht alle Eigenschaften von Quantenteilchen gleichzeitig mit beliebiger Genauigkeit bestimmen kann. Bisher wurde das oft dadurch begründet, dass eine Messung das Quantenteilchen eben notgedrungen verändert und dadurch andere Messungen verfälscht – doch ganz so einfach ist die Sache nicht.

Neutronen-Experimente von Professor Yuji Hasegawa und seinem Team an der TU Wien konnten nun verschiedene Beiträge zur Quanten-Unsicherheit aufschlüsseln und damit eine Theorie japanischer Kollegen bestätigen: Der Einfluss der Messung auf das Quanten-System ist nicht immer der Grund für die Mess-Unsicherheit. Heisenbergs Argumente für die Quanten-Unschärfe müssen also neu überdacht werden – die Unschärferelation selbst bleibt freilich bestehen. Die Ergebnisse wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Ort oder Impuls – doch niemals beides

Dass sich in der Quantenphysik bestimmte Größen nicht gleichzeitig messen lassen ist unbestritten. Die Frage ist, wie man das interpretieren muss. „Bis heute hört man oft von Heisenbergs berühmten Gedankenexperiment, in dem die Position eines Elektrons mit Licht gemessen werden soll“, sagt Jacqueline Erhart vom Atominstitut der TU Wien. Um die Position eines Teilchens sehr genau bestimmen zu können muss man Licht mit sehr kurzer Wellenlänge (also großer Energie) verwenden. Das bedeutet aber auch, dass ein starker Impuls auf das Teilchen übertragen wird: Das Teilchen erhält durch die Messung einen Schubs. Je genauer man den Ort misst umso dramatischer verändert man den Impuls des Teilchens. Ort und Impuls, so argumentierte Heisenberg, sind daher nicht gleichzeitig exakt messbar. Dasselbe gilt in der Quantenphysik für viele andere Messgrößen-Paare. Heisenberg war der Meinung, dass in solchen Fällen eine genauere Messung der einen Messgröße immer eine Störung der zweiten Messgröße verursacht. Das Produkt aus Ungenauigkeit der ersten Messung und Störung der zweiten Messung, so meinte er, kann eine gewisse Grenze nicht unterschreiten.

Die Natur ist unscharf – auch ohne Messung

Dass eine Messung das Quantensystem stört und damit das Ergebnis einer zweiten Messung verfälscht ist aber gar nicht der Kern des Problems. „Solche Störungen gibt es schließlich auch in der klassischen Physik, das hat mit Quantentheorie zunächst noch nichts zu tun“, erläutert Stephan Sponar (TU Wien). Die Unsicherheit liegt in der Quantennatur des Teilchens selbst: Schon lange weiß man, dass man sich in der Quantenphysik ein Teilchen eben nicht mehr als punktförmiges Objekt vorstellen kann, das eine eindeutig bestimmte Geschwindigkeit und eine klare Bewegungsrichtung hat. Stattdessen verhält sich ein Teilchen wie eine Welle – und bei Wellen lassen sich Aufenthaltsort und Impuls eben nicht gleichzeitig beliebig genau definieren. Man könnte sagen: Das Teilchen "weiß" selbst nicht, wo es sich genau befindet und wie schnell es ist – ganz unabhängig davon, ob es gemessen wird oder nicht.

Berücksichtigung des Messvorgangs – neue Unschärferelation

„Um diese prinzipielle Unbestimmtheit und die zusätzliche Störung durch einen Messvorgang korrekt zu beschreiben, kommt man nicht umhin, das Teilchen gemeinsam mit dem Messapparat im quantenmechanischen Formalismus zu beschreiben“, erklärt Georg Sulyok (TU Wien). Genau das gelang dem japanischen Physiker Professor Masanao Ozawa 2003 und führte auf eine verallgemeinerte Unschärferelation: In seinen Gleichungen steckten unterschiedliche „Sorten“ von Unschärfe: Einerseits die Unsicherheit, die durch die Messung entsteht, weil sie in den Zustand des Systems eingreift und damit die andere Messung verfälscht. Das ist die Unsicherheit von Heisenbergs Ort-Impuls-Beispiel. Andererseits beinhalten die Gleichungen auch die grundlegende Quanten-Unsicherheit, die unabhängig von der Messung in jedem Quanten-System vorhanden ist.

Neutronen und ihre Spins

Durch ein ausgeklügeltes Experiment-Design konnten die unterschiedlichen Beiträge am Atominstitut der TU Wien nun gemessen und voneinander unterschieden werden. Dabei wurden nicht Ort und Impuls eines Teilchens untersucht, sondern die Spins von Neutronen. Der Spin in X-Richtung und der Spin in Y-Richtung kann nicht gleichzeitig genau gemessen werden – sie erfüllen eine Unschärferelation, ähnlich wie Ort und Impuls. Durch magnetische Felder wurde der Spin der Neutronen aus dem Reaktor des Atominstituts in die richtige räumliche Orientierung gebracht, ihr Spin wurde in zwei aufeinander folgenden Messungen bestimmt. Durch kontrollierte Manipulationen des Messapparats konnte statistisch ermittelt werden, wie die unterschiedlichen Quellen der Unschärfe miteinander zusammenhängen.

Einfluss der Messung beliebig klein

„Nach wie vor gilt: Je exakter, die erste Messung durchgeführt wird, desto stärker wird die zweite Messung gestört – doch kann das Produkt aus Ungenauigkeit und Störung beliebig klein gemacht werden, auch kleiner, als Heisenbergs ursprüngliche Formulierung der Unschärferelation erlaubt“, sagt Professor Yuji Hasegawa.

Doch auch wenn sich die Messungen kaum beeinflussen - unscharf bleibt die Quantenphysik trotzdem: „Die Unschärferelation ist natürlich nach wie vor richtig“, versichert das Forschungsteam. Man sollte nur mit seiner Begründung vorsichtig sein: „Die Unschärfe kommt nicht vom störenden Einfluss der Messung auf das Quanten-Objekt, sondern von der Quanten-Natur der Teilchen selbst.“

Originalpublikation: Nature Physics DOI: 10.1038/NPHYS2194

Rückfragehinweise:

Prof. Yuji Hasegawa
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
hasegawa@ati.ac.at
Dipl.-Ing. Jacqueline Erhart
Atominstitut, TU Wien
Stadionallee 2, 1020 Wien
+43-1-58801-141459
jacqueline.erhart@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://ati.tuwien.ac.at/forschungsbereiche/nqp/forschung/unschaerferelation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit
21.08.2017 | Universität Leipzig

nachricht Topologische Quantenzustände einfach aufspüren
21.08.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz