Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messung der Sonnenenergie in Echtzeit

28.08.2014

Solare Neutrinos konnten erstmals im Moment ihrer Freisetzung

Zum ersten Mal ist es Wissenschaftlern gelungen, die Sonnenenergie im Moment ihrer Freisetzung zu messen. Ein internationales Forscherteam, an dem auch der Kernphysiker Prof. Kai Zuber von der TU Dresden beteiligt ist, wies im sogenannten Borexino-Experiment solare Neutrinos nach, die bei der Verschmelzung zweier Protonen im Inneren der Sonne, dem allerersten Schritt der Kernreaktion, produziert werden.

Die Ergebnisse wurden heute in der renommierten Zeitschrift Nature veröffentlicht.

Neutrinos, elektrisch neutrale Elementarteilchen, sind äußerst schwer nachzuweisen. Sie haben eine sehr geringe Masse und werden, weil sie durch alles hindurchfliegen können, oft als Geisterteilchen bezeichnet. Die überall auf der Erdoberfläche vorkommende kosmische Strahlung und die natürliche Radioaktivität stören den Nachweis zusätzlich, daher gelingt er nur untertage und in einer extrem sauberen Umgebung, wie sie im Borexino-Detektor im Gran Sasso Untergrundlabor in den italienischen Abruzzen realisiert wurde.

Bisher wurde die Sonnenenergie anhand der Sonnenstrahlung, die für Licht und Wärme sorgt, gemessen. Diese Strahlungsenergie entstand jedoch bereits vor rund 10.000 Jahren im Sonneninneren. So lange dauert es, bis sie an die Oberfläche gelangt und dann abgestrahlt wird.

Die Neutrinos, die bei der Kernfusion entstehen, benötigen dagegen gerade einmal acht Minuten, um von der Sonne bis zur Erde zu gelangen. Mit ihrem Nachweis im Borexino-Experiment ist es damit nun erstmals gelungen, die fundamentale Reaktion der Sonnenenergie quasi in Echtzeit zu messen.

Der Vergleich mit der Strahlungsenergie, die an der Sonnenoberfläche gemessen wurde, zeigt, dass sich die Energiefreisetzung in den vergangenen 100.000 Jahren kaum verändert hat. „Selbst wenn wir die Sonne jetzt ausschalten würden, würde es etwa weitere 10.000 Jahre dauern, bis wir davon auf der Erde etwas merken würden“, sagt Prof. Kai Zuber. Er forscht seit 25 Jahren auf dem Gebiet der solaren Neutrinos.

„Mit diesem Durchbruch schließt sich für mich ein Kreis“, sagt er, weil er bereits an dem indirekten Nachweis dieser fundamentalen Neutrinos Anfang der 90iger Jahre beteiligt war. Rund 120 Wissenschaftler aus Italien, Deutschland, Frankreich, Polen, den USA und Russland arbeiten am Borexino-Experiment. Seitens der TU Dresden ist Prof. Kai Zuber gemeinsam mit seinem Doktoranden Björn Lehnert vor allem an der Analyse der gewonnenen Daten beteiligt.

Online-Artikel bei Nature: http://www.nature.com/nature/journal/v512/n7515/full/nature13702.html
Institut für Kern- und Teilchenphysik der TU Dresden: http://iktp.tu-dresden.de/
Offizielle Homepage des Borexino Experiments: http://borex.lngs.infn.it/

Informationen für Journalisten
Prof. Kai Zuber,Tel. 0351 463-42250, E-Mail: zuber@physik.tu-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten