Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Meilenstein für die Supraleiterforschung

08.10.2013
Ein internationales Team mit Wissenschaftlerinnen und Wissenschaftlern aus Deutschland, Belgien, Frankreich, Italien und den USA hat auf der Basis theoretischer Berechnungen einen völlig neuen Supraleiter entwickelt.

Der extrem harte Eisenborid hat eine in der Natur unbekannte Kristallstruktur und zeichnet sich durch ein Eigenschaftsprofil aus, das für eisenhaltige Supraleiter ungewöhnlich ist.


Erfolgreich bei der Hochdrucksynthese eines neuen, extrem harten Supraleiters: Dr. Huiyang Gou, Elena Bykova, Prof. Dr. Leonid Dubrovinsky, Prof. Dr. Natalia Dubrovinskaia (von li.).

Foto: Laboratorium für Kristallographie der Universität Bayreuth; zur Veröffentlichung frei.

In der aktuellen Ausgabe der "Physical Review Letters" berichtet das Team über seine Entdeckung. Diese ist insofern ein Meilenstein für die Supraleiterforschung, als sie aus Berechnungen am Computer und nicht aus Experimenten nach dem Versuch-und-Irrtum-Verfahren hervorgegangen ist.

Hohes Interesse an neuen supraleitenden Materialien

Supraleiter zeichnen sich dadurch aus, dass sie unterhalb bestimmter Temperaturen keinen elektrischen Widerstand aufweisen und so eine verlustfreie Übertragung von Strom ermöglichen. Aus zentralen Bereichen von Forschung und Technologie sind sie heute nicht mehr wegzudenken. Sie kommen beispielsweise in der Energietechnik zum Einsatz sowie überall dort, wo starke Magnetfelder benötigt werden – wie etwa in der Medizintechnik und in Teilchenbeschleunigern.

Weltweit besteht ein hohes Interesse an der Entwicklung neuer supraleitender Materialien. Diese sollen leistungsfähiger als die bisher verwendeten Supraleiter sein und mindestens ebenso kostengünstig im Industriemaßstab hergestellt werden können. Die physikalischen Grundlagen von Supraleitern sind aber wegen ihrer Komplexität bisher nur ansatzweise geklärt.

Daher ist es äußerst schwierig, allein aufgrund theoretischer Berechnungen vorherzusagen, wie ein Material aufgebaut sein muss, damit es supraleitende Eigenschaften hat. Völlig neue Supraleiter wurden daher in der Vergangenheit nur auf experimentellem Weg, häufig auch durch Zufall entdeckt.

Von der Theorie zur Hochdrucksynthese im Laboratorium

Dem internationalen Forschungsteam unter der Leitung von Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky an der Universität Bayreuth ist es jetzt aber mithilfe leistungsstarker Hochdrucktechnologien erstmals gelungen, ein Material, dem in der Theorie supraleitende Eigenschaften zugeschrieben worden sind, zu synthetisieren und als Supraleiter zu identifizieren. Es handelt sich dabei um Eisentetraborid (FeB4).

Dieses Material, das in der Natur nicht vorkommt und nur im Laboratorium unter hohen Drücken entsteht, ist vor kurzem von dem U.S.-amerikanischen Physiker Prof. Dr. Aleksey N. Kolmogorov (New York State University) in den "Physical Review Letters" als ein potenzieller Supraleiter theoretisch beschrieben worden.

Forschungsarbeiten am Laboratorium für Kristallographie und am Bayerischen Geoinstitut (BGI) der Universität Bayreuth haben diese Prognose jetzt bestätigt. Hier ist es gelungen, Eisentetraborid bei Drücken von 8 Gigapascal und bei Temperaturen von rund 1.500 Grad Celsius zu synthetisieren. Messungen der physikalischen Eigenschaften führten anschließend zu dem Ergebnis, dass es sich tatsächlich um einen Supraleiter handelt.

Eisentetraborid: ein neuer Supraleiter, fast so hart wie Diamant

Röntgenkristallographische Untersuchungen wurden an der Europäischen Synchrotronstrahlungsquelle ESRF in Grenoble durchgeführt. Hier stellte sich heraus, dass Eisentetraborid tatsächlich die am Computer vorhergesagte Struktur besitzt. Unerwartet war für die Bayreuther Forscher die extreme Härte des Materials mit einer Nanoindentation von 65 Gigapascal. Eisentetraborid ist damit härter als alle bisher bekannten Metallboride. Es ist fast so hart wie Diamant und gehört zur Klasse der superharten Materialien.

"Unsere Forschungsergebnisse zeigen, dass es grundsätzlich möglich ist, supraleitende Materialien allein durch theoretische Berechnungen am Computer von Grund auf zu entwerfen", erklärt Prof. Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. "Mit geeigneten Hochdruck-Verfahren lassen sich diese Ergebnisse empirisch überprüfen. Wir bewegen uns also auf einem spannenden, innovativen Forschungsgebiet. Ausgehend von der Entwicklung extrem harter Supraleiter lassen sich möglicherweise in Zukunft neue supraleitende nano- und mikroelektromechanische Systeme konzipieren."

Erfolgreicher wissenschaftlicher Nachwuchs an der Universität Bayreuth

Die Synthese des Eisentetraborids, das exakt die vorhergesagte Kristallstruktur aufweist, ist insbesondere ein Forschungserfolg für Dr. Huiyang Gou, der sich als Humboldt-Stipendiat an der Universität Bayreuth dieser Herausforderung gewidmet hat. An der folgenden Aufklärung der supraleitfähigen und magnetischen Eigenschaften von FeB4 haben Experten in mehreren europäischen Laboratorien mitgewirkt. Elena Bykova, Doktorandin an der Universität Bayreuth im Promotionsprogramm Experimentelle Geowissenschaften der BayNAT, hat dabei wesentlich zu den erforderlichen Strukturuntersuchungen beigetragen. Im Juli 2013 erhielt sie ein Stipendium der International Association for the Advancement of High Pressure Science and Technology und konnte so in Seattle/USA an einer der führenden internationalen Fachkonferenzen zur Hochdruck-Materialforschung teilnehmen.

DFG fördert Supraleiterforschung mit neuer Hochdruckpresse

Die Forschungsarbeiten zum neuen Supraleiter stehen im engen Zusammenhang mit dem von Prof. Dubrovinskaia geleiteten Projekt "In incude Synthese und Untersuchung innovativer multifunktionaler fester Materialien – Boride von Übergangsmetallen (ÜM=Fe, Cr, Mn, Mo, W, Ti)". Die Deutsche Forschungsgemeinschaft fördert dabei mit mehr als 250.000 Euro die Anschaffung einer Hochdruckpresse, die demnächst im Laboratorium für Kristallographie installiert wird. Diese Presse ermöglicht die Synthese weiterer komplexer Materialien, die bisher nur in der Theorie existieren, und können so auch einen wesentlichen Beitrag zur künftigen Supraleiterforschung leisten.

Veröffentlichung:

Huiyang Gou, Natalia Dubrovinskaia, Elena Bykova, Alexander A. Tsirlin, Deepa Kasinathan, Walter Schnelle, Asta Richter, Marco Merlini, Michael Hanfland, Artem M. Abakumov, Dmitry Batuk, Gustaaf Van Tendeloo, Yoichi Nakajima, Aleksey N. Kolmogorov, and Leonid Dubrovinsky,
Discovery of a Superhard Iron Tetraboride Superconductor,
in: Physical Review Letters, 111, 157002 (2013),
DOI: 10.1103/PhysRevLett.111.157002, published 7 October 2013
Ansprechpartner:
Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de
Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz