Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Meilenstein für die Supraleiterforschung

08.10.2013
Ein internationales Team mit Wissenschaftlerinnen und Wissenschaftlern aus Deutschland, Belgien, Frankreich, Italien und den USA hat auf der Basis theoretischer Berechnungen einen völlig neuen Supraleiter entwickelt.

Der extrem harte Eisenborid hat eine in der Natur unbekannte Kristallstruktur und zeichnet sich durch ein Eigenschaftsprofil aus, das für eisenhaltige Supraleiter ungewöhnlich ist.


Erfolgreich bei der Hochdrucksynthese eines neuen, extrem harten Supraleiters: Dr. Huiyang Gou, Elena Bykova, Prof. Dr. Leonid Dubrovinsky, Prof. Dr. Natalia Dubrovinskaia (von li.).

Foto: Laboratorium für Kristallographie der Universität Bayreuth; zur Veröffentlichung frei.

In der aktuellen Ausgabe der "Physical Review Letters" berichtet das Team über seine Entdeckung. Diese ist insofern ein Meilenstein für die Supraleiterforschung, als sie aus Berechnungen am Computer und nicht aus Experimenten nach dem Versuch-und-Irrtum-Verfahren hervorgegangen ist.

Hohes Interesse an neuen supraleitenden Materialien

Supraleiter zeichnen sich dadurch aus, dass sie unterhalb bestimmter Temperaturen keinen elektrischen Widerstand aufweisen und so eine verlustfreie Übertragung von Strom ermöglichen. Aus zentralen Bereichen von Forschung und Technologie sind sie heute nicht mehr wegzudenken. Sie kommen beispielsweise in der Energietechnik zum Einsatz sowie überall dort, wo starke Magnetfelder benötigt werden – wie etwa in der Medizintechnik und in Teilchenbeschleunigern.

Weltweit besteht ein hohes Interesse an der Entwicklung neuer supraleitender Materialien. Diese sollen leistungsfähiger als die bisher verwendeten Supraleiter sein und mindestens ebenso kostengünstig im Industriemaßstab hergestellt werden können. Die physikalischen Grundlagen von Supraleitern sind aber wegen ihrer Komplexität bisher nur ansatzweise geklärt.

Daher ist es äußerst schwierig, allein aufgrund theoretischer Berechnungen vorherzusagen, wie ein Material aufgebaut sein muss, damit es supraleitende Eigenschaften hat. Völlig neue Supraleiter wurden daher in der Vergangenheit nur auf experimentellem Weg, häufig auch durch Zufall entdeckt.

Von der Theorie zur Hochdrucksynthese im Laboratorium

Dem internationalen Forschungsteam unter der Leitung von Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky an der Universität Bayreuth ist es jetzt aber mithilfe leistungsstarker Hochdrucktechnologien erstmals gelungen, ein Material, dem in der Theorie supraleitende Eigenschaften zugeschrieben worden sind, zu synthetisieren und als Supraleiter zu identifizieren. Es handelt sich dabei um Eisentetraborid (FeB4).

Dieses Material, das in der Natur nicht vorkommt und nur im Laboratorium unter hohen Drücken entsteht, ist vor kurzem von dem U.S.-amerikanischen Physiker Prof. Dr. Aleksey N. Kolmogorov (New York State University) in den "Physical Review Letters" als ein potenzieller Supraleiter theoretisch beschrieben worden.

Forschungsarbeiten am Laboratorium für Kristallographie und am Bayerischen Geoinstitut (BGI) der Universität Bayreuth haben diese Prognose jetzt bestätigt. Hier ist es gelungen, Eisentetraborid bei Drücken von 8 Gigapascal und bei Temperaturen von rund 1.500 Grad Celsius zu synthetisieren. Messungen der physikalischen Eigenschaften führten anschließend zu dem Ergebnis, dass es sich tatsächlich um einen Supraleiter handelt.

Eisentetraborid: ein neuer Supraleiter, fast so hart wie Diamant

Röntgenkristallographische Untersuchungen wurden an der Europäischen Synchrotronstrahlungsquelle ESRF in Grenoble durchgeführt. Hier stellte sich heraus, dass Eisentetraborid tatsächlich die am Computer vorhergesagte Struktur besitzt. Unerwartet war für die Bayreuther Forscher die extreme Härte des Materials mit einer Nanoindentation von 65 Gigapascal. Eisentetraborid ist damit härter als alle bisher bekannten Metallboride. Es ist fast so hart wie Diamant und gehört zur Klasse der superharten Materialien.

"Unsere Forschungsergebnisse zeigen, dass es grundsätzlich möglich ist, supraleitende Materialien allein durch theoretische Berechnungen am Computer von Grund auf zu entwerfen", erklärt Prof. Dubrovinskaia, Heisenberg-Professorin für Materialphysik und Technologie bei extremen Bedingungen an der Universität Bayreuth. "Mit geeigneten Hochdruck-Verfahren lassen sich diese Ergebnisse empirisch überprüfen. Wir bewegen uns also auf einem spannenden, innovativen Forschungsgebiet. Ausgehend von der Entwicklung extrem harter Supraleiter lassen sich möglicherweise in Zukunft neue supraleitende nano- und mikroelektromechanische Systeme konzipieren."

Erfolgreicher wissenschaftlicher Nachwuchs an der Universität Bayreuth

Die Synthese des Eisentetraborids, das exakt die vorhergesagte Kristallstruktur aufweist, ist insbesondere ein Forschungserfolg für Dr. Huiyang Gou, der sich als Humboldt-Stipendiat an der Universität Bayreuth dieser Herausforderung gewidmet hat. An der folgenden Aufklärung der supraleitfähigen und magnetischen Eigenschaften von FeB4 haben Experten in mehreren europäischen Laboratorien mitgewirkt. Elena Bykova, Doktorandin an der Universität Bayreuth im Promotionsprogramm Experimentelle Geowissenschaften der BayNAT, hat dabei wesentlich zu den erforderlichen Strukturuntersuchungen beigetragen. Im Juli 2013 erhielt sie ein Stipendium der International Association for the Advancement of High Pressure Science and Technology und konnte so in Seattle/USA an einer der führenden internationalen Fachkonferenzen zur Hochdruck-Materialforschung teilnehmen.

DFG fördert Supraleiterforschung mit neuer Hochdruckpresse

Die Forschungsarbeiten zum neuen Supraleiter stehen im engen Zusammenhang mit dem von Prof. Dubrovinskaia geleiteten Projekt "In incude Synthese und Untersuchung innovativer multifunktionaler fester Materialien – Boride von Übergangsmetallen (ÜM=Fe, Cr, Mn, Mo, W, Ti)". Die Deutsche Forschungsgemeinschaft fördert dabei mit mehr als 250.000 Euro die Anschaffung einer Hochdruckpresse, die demnächst im Laboratorium für Kristallographie installiert wird. Diese Presse ermöglicht die Synthese weiterer komplexer Materialien, die bisher nur in der Theorie existieren, und können so auch einen wesentlichen Beitrag zur künftigen Supraleiterforschung leisten.

Veröffentlichung:

Huiyang Gou, Natalia Dubrovinskaia, Elena Bykova, Alexander A. Tsirlin, Deepa Kasinathan, Walter Schnelle, Asta Richter, Marco Merlini, Michael Hanfland, Artem M. Abakumov, Dmitry Batuk, Gustaaf Van Tendeloo, Yoichi Nakajima, Aleksey N. Kolmogorov, and Leonid Dubrovinsky,
Discovery of a Superhard Iron Tetraboride Superconductor,
in: Physical Review Letters, 111, 157002 (2013),
DOI: 10.1103/PhysRevLett.111.157002, published 7 October 2013
Ansprechpartner:
Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de
Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie