Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein bei Belle II: Detektor nimmt seinen Platz im Beschleunigerring ein

12.04.2017

Das Belle II-Experiment hat einen wichtigen Schritt gemacht – im wahrsten Sinne des Wortes: Der neue Detektor wurde an seinen Bestimmungsort im SuperKEKB-Beschleunigerring transportiert.

Das Belle II-Experiment ist ein internationales Forschungsvorhaben, dem Wissenschaftlerinnen und Wissenschaftler aus der ganzen Welt angehören. Standort ist das KEK-Forschungszentrum in Tsukuba, Japan.


Belle II hat seinen Bestimmungsort im Beschleunigerring SuperKEKB erreicht.

KEK

Belle II ist das modernisierte und verbesserte Nachfolge-Experiment des Belle-Detektors. Damit wollen Forscher den Geheimnissen des Urknalls und des jungen Universums auf die Spur kommen.

Der Belle II-Detektor ermöglicht hochpräzise Messungen von Teilchenkollisionen, die im SuperKEKB erzeugt werden. Dieser Beschleuniger wurde in den vergangenen fünf Jahren auf den neuesten technischen Stand gebracht.

In dieser Zeit haben die an Belle II beteiligten Forschungsgruppen auch den Detektor neu konzipiert und umgebaut. Beim jetzt abgeschlossenen "Roll-in" legte das 1.400 Tonnen schwere Belle II-System 13 Meter zurück: Dabei wurde der Detektor langsam und vorsichtig vom Montageort an die Stelle im Beschleunigerring bewegt, wo künftig die Teilchenkollisionen stattfinden. Belle II und der SuperKEKB-Beschleuniger sind jetzt miteinander verbunden.

Mit dem Belle II-Experiment werden die Wissenschaftler verschiedene Elementarteilchen beobachten, die beim Zusammenprall von hochenergetischen Elektronen und Positronen entstehen. Der Detektor setzt sich aus sieben verschiedenen Teildetektoren zusammen.

Diese messen die Richtung und den Impuls der neu produzierten Teilchen. Im Vergleich zum früheren Belle-Experiment lassen sich mit Belle II wesentlich mehr Daten bei gleichzeitig höherer Messgenauigkeit aufzeichnen.

Am Belle II-Experiment beteiligen sich über 700 Forscher aus 23 Staaten. Ihr Ziel ist es, "neue Physik" jenseits des Standardmodells zu finden – und herauszufinden, welche der vorgeschlagenen neuen Theorien für die Welt der Teilchenphysik tatsächlich zutrifft.

Das Max-Planck-Institut für Physik leitet die internationale Arbeitsgemeinschaft, die für den innersten Detektor verantwortlich ist. Der so genannte Pixel-Vertex-Detektor leistet hochpräzise Messungen in unmittelbarer Nähe zum Kollisionsort.

Weitere Informationen:

https://www.mpp.mpg.de/aktuelles/meldungen/detail/meilenstein-bei-belle-ii-detek...

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie