Mehr sehen als das Abbesche Limit erlaubt

Jedes Mikroskop – auch das Allerbeste – hat ein Auflösungslimit. Wie der Physiker Ernst Abbe bereits Ende des 19. Jahrhunderts beschrieb, werden Punkte, die näher aneinanderliegen als die halbe Wellenlänge des verwendeten Lichts, in der mikroskopischen Aufnahme nicht mehr getrennt abgebildet. Bei grünem Licht mit einer Wellenlänge von 520 Nanometer liegt die sogenannte Abbesche Auflösungsgrenze etwa bei 260 Nanometern.

„Diese physikalische Auflösungsgrenze zu umgehen und in immer kleinere Dimensionen vorzustoßen, das versuchen Wissenschaftler bereits seit über hundert Jahren“, sagt Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena. Mit Hilfe neuartiger Verfahren wie beispielsweise optischer Rasternahfeldmikroskopie oder Fluoreszenzmikroskopie gelinge dies bereits. „Allerdings haben diese den Nachteil, über die Probe scannen zu müssen und daher nicht in Echtzeit arbeiten zu können“, sagt der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme.

Wissenschaftler des Technion-Israel Institute of Technology in Haifa haben in enger Zusammenarbeit mit Prof. Szameit und seinen Kollegen vom Institut für Angewandte Physik einen anderen Weg eingeschlagen. Im renommierten Magazin „Nature Materials“ berichten die Forscher von einer rein mathematischen Methode, die das Auflösungsvermögen jedes Mikroskops etwa um den Faktor zehn verbessern kann (DOI: 10.1038/NMAT3289).

Für den hochauflösenden Einblick in die Nanowelt benötigen die Physiker keine neuartige Optik im Mikroskop. „Wir haben einen numerischen Algorithmus entwickelt, mit dessen Hilfe aus den vorliegenden mikroskopischen Daten ein deutlich höher aufgelöstes Bild berechnet werden kann“, sagt Alexander Szameit. Voraussetzung dafür ist das Wissen, dass das abzubildende Objekt aus einer begrenzten Anzahl an Punkten besteht – es sich also nicht einfach um ein „Rauschen“ handelt. „Anhand des Algorithmus errechnet der Computer die fehlenden Bildinformationen, welche dann die ursprüngliche Abbildung ergänzen“, erläutert der Jenaer Physiker.

In der vorliegenden Arbeit haben Alexander Szameit und seine Kollegen lichtmikroskopische Aufnahmen von Proben bearbeitet, deren nur 100 Nanometer kleine Details zunächst lediglich unscharf und verschwommen abgebildet waren. Nach der Bearbeitung am Computer waren diese Details klar und deutlich zu sehen, obwohl sie mit ihrer Größe deutlich unter der Auflösungsgrenze von 260 Nanometern lagen.

Die Idee für das innovative Verfahren stammt aus der Arbeitsgruppe um Prof. Mordechai Segev vom Israel Institut of Technology in Haifa. Alexander Szameit hat dort von 2009 bis 2011 als Postdoc geforscht und arbeitet bis heute mit den dortigen Kollegen eng zusammen.

Originalpublikation:
Szameit A. et al. Sparsity-based single-shot subwavelength coherent diffractive imaging, Nature Materials, May 2012, Vol. 11, DOI: 10.1038/NMAT3289
Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: szameit[at]iap.uni-jena.de

Media Contact

Dr. Ute Schönfelder idw

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer