Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr sehen als das Abbesche Limit erlaubt

11.05.2012
Physiker der Universität Jena entwickeln mit Kollegen aus Israel numerisches Verfahren zur Verbesserung der Auflösung von Mikroskopen / Publikation in „Nature Materials“

Jedes Mikroskop – auch das Allerbeste – hat ein Auflösungslimit. Wie der Physiker Ernst Abbe bereits Ende des 19. Jahrhunderts beschrieb, werden Punkte, die näher aneinanderliegen als die halbe Wellenlänge des verwendeten Lichts, in der mikroskopischen Aufnahme nicht mehr getrennt abgebildet. Bei grünem Licht mit einer Wellenlänge von 520 Nanometer liegt die sogenannte Abbesche Auflösungsgrenze etwa bei 260 Nanometern.

„Diese physikalische Auflösungsgrenze zu umgehen und in immer kleinere Dimensionen vorzustoßen, das versuchen Wissenschaftler bereits seit über hundert Jahren“, sagt Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena. Mit Hilfe neuartiger Verfahren wie beispielsweise optischer Rasternahfeldmikroskopie oder Fluoreszenzmikroskopie gelinge dies bereits. „Allerdings haben diese den Nachteil, über die Probe scannen zu müssen und daher nicht in Echtzeit arbeiten zu können“, sagt der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme.

Wissenschaftler des Technion-Israel Institute of Technology in Haifa haben in enger Zusammenarbeit mit Prof. Szameit und seinen Kollegen vom Institut für Angewandte Physik einen anderen Weg eingeschlagen. Im renommierten Magazin „Nature Materials“ berichten die Forscher von einer rein mathematischen Methode, die das Auflösungsvermögen jedes Mikroskops etwa um den Faktor zehn verbessern kann (DOI: 10.1038/NMAT3289).

Für den hochauflösenden Einblick in die Nanowelt benötigen die Physiker keine neuartige Optik im Mikroskop. „Wir haben einen numerischen Algorithmus entwickelt, mit dessen Hilfe aus den vorliegenden mikroskopischen Daten ein deutlich höher aufgelöstes Bild berechnet werden kann“, sagt Alexander Szameit. Voraussetzung dafür ist das Wissen, dass das abzubildende Objekt aus einer begrenzten Anzahl an Punkten besteht – es sich also nicht einfach um ein „Rauschen“ handelt. „Anhand des Algorithmus errechnet der Computer die fehlenden Bildinformationen, welche dann die ursprüngliche Abbildung ergänzen“, erläutert der Jenaer Physiker.

In der vorliegenden Arbeit haben Alexander Szameit und seine Kollegen lichtmikroskopische Aufnahmen von Proben bearbeitet, deren nur 100 Nanometer kleine Details zunächst lediglich unscharf und verschwommen abgebildet waren. Nach der Bearbeitung am Computer waren diese Details klar und deutlich zu sehen, obwohl sie mit ihrer Größe deutlich unter der Auflösungsgrenze von 260 Nanometern lagen.

Die Idee für das innovative Verfahren stammt aus der Arbeitsgruppe um Prof. Mordechai Segev vom Israel Institut of Technology in Haifa. Alexander Szameit hat dort von 2009 bis 2011 als Postdoc geforscht und arbeitet bis heute mit den dortigen Kollegen eng zusammen.

Originalpublikation:
Szameit A. et al. Sparsity-based single-shot subwavelength coherent diffractive imaging, Nature Materials, May 2012, Vol. 11, DOI: 10.1038/NMAT3289
Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: szameit[at]iap.uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie