Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Schutz vor Sprengstoff und nuklearem Material in Frachtcontainern

07.05.2009
PTB und Partner haben Inspektionssystem auf Basis von Neutronenstrahlung entwickelt - Detektion von nuklearem Material geplant

Illegal transportierte konventionelle Sprengstoffe und kerntechnisch relevante oder radioaktive Stoffe können internationale Terrororganisationen in die Lage versetzen, gefährliches Material für Anschläge an jeden Ort der Erde zu transportieren.

Zum besseren Schutz vor solch gefährlicher Fracht entwickeln Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und eines israelischen Forschungszentrums ein Cargoinspektionssystem, das konventionelle Sprengstoffe - und nebenbei auch Drogen - mit Hilfe von Neutronenradiografie detektieren soll. Die Forschungsarbeit soll zu fest installierten Anlagen an Flughäfen und Grenzübergangspunkten führen, in denen Container und Cargo-Paletten mit Fracht vollautomatisch, d.h. ohne die bisher erforderliche Durchsuchung oder visuelle Beurteilung von Röntgenbildern durch geschultes Personal, untersucht werden können.

Unterstützt werden die Forschungsarbeiten durch das "Science for Peace"- Programm der NATO. Im nächsten Schritt planen die Wissenschaftler nun, zusätzlich zu den Neutronen auch eine spezielle Form der Gammaradiografie einzusetzen, um auch noch kerntechnische und radioaktive Stoffe aufspüren zu können.

Neutronenresonanzradiografie nennt sich das Verfahren, das die PTB-Wissenschaftler und ihre israelischen Kollegen so verbessert haben, dass sich auch sehr kleine Sprengstoffmengen entdecken lassen, die aufgrund ihrer Form oder einer starken Abschirmung mit herkömmlichen Röntgentechniken unauffindbar waren. Dazu sind schnelle Neutronen mit Energien von 1 bis 10 MeV nötig. Diese im Schnitt 30000 Kilometer pro Sekunde schnellen Neutronen können an der Beschleunigeranlage der PTB produziert werden, einer für Europa einzigartigen Einrichtung zur Erzeugung und Anwendung schneller Neutronen. Neutronen sind neben den Protonen Bestandteile von Atomkernen und müssen, um in dieser Anwendung nutzbar zu werden, mit Hilfe beschleunigter Ionen erst aus dem Atomkern befreit werden.

Mit energiereichen, schnellen Neutronen kann die stoffliche Zusammensetzung von leichten, insbesondere organischen Objekten ermittelt werden. Dazu werden die Neutronen nach Ihrer Erzeugung durch einen Ionenbeschleuniger durch den Container oder andere Frachtbehälter geschickt und auf der anderen Seite mit einer Neutronenkamera nachgewiesen. Auf dem Weg durch die Fracht ändert sich die räumliche und energetische Verteilung der Neutronen, und daraus kann wiederum die Verteilung von Kohlenstoff, Wasserstoff, Sauerstoff und Stickstoff im Inhalt des Containers berechnet werden. Sprengstoffe, aber auch Drogen bestehen aus ganz bestimmten Zusammensetzungen dieser Elemente, die sie klar von harmlosen Allerweltsstoffen wie Kunststoff oder Lebensmitteln unterscheiden. Der Computer der Inspektionsanlage kennt diese Zusammensetzungen und gibt Alarm, sobald eine vorprogrammierte Sprengstoffsignatur in einem Container festgestellt wird.

In der Praxis wird diese Untersuchungsmethode nicht für kleine Frachtstücke, wie Koffer und Reisegepäck in Frage kommen, da es sich um relativ große Anlagen handeln wird, die nicht an jedem Flughafen Platz finden. Immerhin wird ein Ionenbeschleuniger und relativ viel Abschirmmaterial für die Strahlung benötigt. Deshalb eignet sich das Verfahren nur für Frachtcontainer und auf Paletten oder in Gepäckwagen gebündeltes Reisegepäck.

Zurzeit bemüht sich die PTB gemeinsam mit anderen Partnern aus Forschung und Industrie um weitere finanziellen Mittel, um eine solche Anlage im Labormaßstab aufbauen zu können. Damit könnte potentiellen Kunden das Verfahren demonstriert werden und als Vorbild für eine einsatzfähige Anlage dienen. Dieses neue Projekt geht jedoch noch einen Schritt weiter: Nun soll nicht nur Neutronenstrahlung, sondern auch eine besondere Form von Gammastrahlung genutzt werden, die gemeinsam mit den Neutronen erzeugt wird. Die Durchleuchtung mit Gammastrahlung ergänzt die Neutronentechnik, da sich Gammastrahlung besonders für das Auffinden von schwereren Elementen, wie spaltbarem und radioaktivem Material eignet. Diese Stoffe rücken zunehmend in den Fokus der Sicherheitsbehörden, da zum Einen die Weiterverbreitung von Schlüsselkomponenten von Massenvernichtungswaffen verhindert werden soll und zum Anderen diese Stoffe von Terroristen zum Bau einer so genannten "schmutzigen Bombe" oder sogar einer primitiven Kernwaffe verwendet werden können. Sie könnten in kleinen Mengen ins Land gebracht und vor Ort zusammengebaut und gezündet werden.

Forschung auf diesem Gebiet hat nicht nur einen sicherheitspolitischen Hintergrund, sondern auch einen wirtschaftlichen: Die US-Regierung hat 2007 ein Gesetz verabschiedet, welches fordert, dass bis 2012 das gesamte Marine- und Luftfrachtgut mit Bestimmungsland USA bereits vor der Verladung im ausländischen Hafen oder Flughafen auf illegale Gefahrstoffe untersucht werden muss. Dieses Gesetz ist insbesondere für die Staaten von Bedeutung, die umfangreichen Handel mit den Vereinigten Staaten treiben, wie beispielsweise Deutschland. Hier wird es in Zukunft vermutlich einen großen Bedarf an automatischen Inspektionssystemen geben, der einen entsprechenden Markt entstehen lässt.

PTB-Kontakt
Dr. Volker Dangendorf, Arbeitsgruppe 6.51 Detektorentwicklung, Tel. (0531) 592-6510, E-Mail: Volker.Dangendorf@ptb.de

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie