Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Noch mehr Leistung für Laserkraftpakete

14.10.2010
Entweder einmal mit ungeheurer Wucht oder ganz schnell in Folge - so könnte man den derzeitigen Stand in der Lasertechnologie beschreiben.

Physiker des Max-Born-Instituts (MBI) in Berlin wollen in enger Zusammenarbeit mit den Diodenlaserspezialisten des Ferdinand-Braun-Instituts (FBH) beides verbinden. Ihr Ziel sind Laser, die hohe Einzelpulsleistungen haben und mindestens einhundert Mal pro Sekunde abgefeuert werden können. Für die Entwicklung solcher Laser erhielten die Forscher 3 Millionen Euro von der Europäischen Union (Europäischer Fonds für regionale Entwicklung - EFRE). Der Gesamtetat des Projektes beträgt 6 Millionen.


Spiegel eines Laserverstäkers. MBI-Physiker wollen die Einzelpulsleistung ihrer Laser weiter erhöhen und damit mittlere Laserleistungen im Kilowattbereich erzielen. Foto: Uwe Bellhäuser

Hochintensitätslaser sind ein relativ junges Produkt der physikalischen Forschung. Sie können einzelne Lichtpulse mit unvorstellbarer Leistung aussenden – weit mehr als die Leistung aller Kraftwerke dieser Welt zusammen. Dabei drängt sich die Energie des Einzelpulses auf einen Zeitraum zusammen, der deutlich kürzer ist als ein Millionstel einer millionstel Sekunde. Wegen ihrer hohen Einzelpulsleistung sind solche Laser dabei, viele Gebiete der Naturwissenschaften, Technik und Medizin zu revolutionieren.

Sie dienen unter anderem der Erzeugung neuer Materiezustände, der Ultrapräzisionsbearbeitung von Materialien oder zur Erzeugung von Teilchen- oder Photonenstrahlung mit bisher unerreichten Eigenschaften. Man erwartet sogar, dass innerhalb des nächsten Jahres erstmals die Kernfusion mittels Hochintensitätslasern demonstriert werden kann – vielleicht ein Schritt zu einer vergleichsweise sauberen und praktisch unerschöpflichen Energiequelle.

Eine technologische Lücke besteht jedoch bei fast allen diesen Lasern: Die Wiederholrate ihrer Lichtpulse ist beschränkt und liegt bei 10 mal pro Sekunde (10 Hertz), oft deutlich darunter. „Wenn auch die Einzelpulse ungeheuer leistungsstark sind, die Gesamtleistung oder auch mittlere Leistung herkömmlicher Hochintensitätslaser beträgt kaum mehr als 10 Watt. Das ist vergleichbar mit einer Energiesparlampe“, sagt MBI-Direktor Professor Wolfgang Sandner, in dessen Bereich das neue Projekt angesiedelt ist.

In diese Lücke stößt die neue MBI-Laserentwicklung. Das Institut besitzt seit einigen Jahren eine weltweite Spitzenposition auf dem Gebiet von Pikosekunden-Lasern hoher Pulsenergie und Wiederholrate, also hoher mittlerer Leistung. Diese Systeme können dank einer innovativen, hocheffizienten Kühlung des Lasermaterials mehr als hundertmal pro Sekunde abgefeuert werden. „Um bei diesen Lasern die mittlere Leistung noch weiter zu steigern, wollen wir vor allem die Energie der Einzelpulse erhöhen, zunächst auf einige Joule, später wahrscheinlich auf deutlich mehr“, kündigt der MBI-Projektleiter Dr. Ingo Will an. Solche Laser hätten dann eine mittlere Leistung im Kilowattbereich mit Pulsdauern von Pikosekunden und sehr hohen Einzelpulsenergien, was bis jetzt noch von keinem Laser erreicht wird.

Dringend benötigt werden solche Laserkraftpakete zum Beispiel als technologische Basis für das europäische Großobjekt ELI. Das Kürzel steht für Extreme Light Infrastructure, den künftig weltweit leistungsstärksten Laser für die Grundlagenforschung. Erste Entwürfe für das Front-end eines 10 Petawatt Lasers, Demonstrator für das ELI-Projekt, sind bereits abgeschlossen. Der Pumplaser für dieses Frontend wird zurzeit am MBI gebaut und soll demnächst an das Institut d'Optique in Palaiseau, Frankreich, ausgeliefert werden.

Das Grundkonzept der neuen Laser ist ein vollständig dioden-gepumpter Festkörperlaser. Eine der erfolgversprechendsten Laserarchitekturen, die sogenannte Scheibenlaser-Architektur, wurde von den Kooperationspartnern IfSW Stuttgart, DLR Stuttgart und TRUMPF Lasertechnik GmbH übernommen und in den letzten Jahren mit Mitteln der Berliner Technologieförderung PROFIT und des Leibniz-SAW-Programms weiterentwickelt. Vom Projektpartner FBH kommen neuartige Pumpdioden für die Scheibenlaser. Gefördert wird das jetzt bewilligte EFRE-Projekt über die Senatsverwaltung für Bildung, Wissenschaft und Forschung des Landes Berlin.

Als ersten Meilenstein im eigenen Hause wollen die MBI-Forscher mit dem neuen Laser einen weltweit einzigartigen kompakten Röntgenlaser mit Energie versorgen. Mit einer Wellenlänge von 13 Nanometern und einer Wiederholrate von 100 Hertz soll er im Labor kohärente Röntgenstrahlung erzeugen, wie es sonst nur große Freie-Elektronen-Laser wie FLASH in Hamburg können. Langfristig sollen Scheibenlaser als Energiequelle für die nächste Generation von Hochintensitätslasern dienen. Außerdem plant das MBI den Aufbau einer Hochleistungs-Attosekundenquelle in Zusammenarbeit mit Prof. Marc Vrakking, dem neu berufenen Direktor am MBI.

Kontakt:
Dr. Ingo Will, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Tel.: 030 6392 1320, will@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften