Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Institut ebnet künftigen Quantennetzwerken den Weg

21.09.2009
Als gebündelte Lichtstrahlen können Laser verschiedene Farben annehmen. Eine deutsch-brasilianische Forschergruppe nützt dies aus, um Vorbedingungen für künftige Quantennetzwerke zu erarbeiten.

Das Erlanger Max-Planck-Institut für die Physik des Lichts hat zusammen mit der Universität Erlangen-Nürnberg und der Universität von São Paulo ein Projekt zur Verschränkung zwischen drei Laserstrahlen verschiedener Farbe durchgeführt. Das gelungene Experiment beschreiben die Wissenschaftlerinnen und Wissenschaftler in der online-Ausgabe der Fachzeitschrift Science.

Dr. Katiuscia Cassemiro und Dr. Alessandro Villar, beide Post-doc-Forscher am Max-Planck-Institut und dem Institut für Optik, Information und Photonik der Universität, haben von Erlanger Seite Ideen, Berechnungen und Simulationen zu dem Projekt beigesteuert. Die experimentelle Arbeit, also die erforderlichen Messungen, wurden von den Kollegen in Brasilien übernommen.

Nach dem Ausdruck "entangle" für "verwirren, verhaken" wird eine Verschränkung zwischen drei Laserstrahlen mit verschiedenen Farben im Englischen auch "rainbow entanglement" genannt. Ein solches "Regenbogenknäuel" könnte in Zukunft sehr nützlich sein für Quantennetzwerke, die für Aufgaben wie Quantenberechnungen und die Realisierung von Quantenspeichern mehrere Systeme verwenden. Solche Systeme sind zunächst nicht kompatibel; zwischen ihnen können also keine Informationen ausgetauscht werden. Die verschiedenfarbigen, verschränkten Laserstrahlen übernehmen die Übersetzungsaufgabe. Anders gesagt: Jedes Quantenkommunikationsgerät ("Quanten Hardware") in einem zukünftigen Quantennetzwerk wird wahrscheinlich eine unterschiedliche resonante Lichtfrequenz (d. h. Farbe) zum Informationstransfer besitzen. Durch verschränktes Licht mit verschiedenen Frequenzen könnten zwei oder mehr Lichtstrahlen mit den richtigen Frequenzen die Kommunikation verschiedener Systemen sicherstellen.

Mit Verlusten von Licht, die - wenn auch nur in geringen Maß - in einem Quantenkanal ebenso wie in einem klassischen Kanal prinzipiell unvermeidbar sind, befasste sich ein zweiter Teil der Arbeit. Überraschenderweise ergab sich, dass von der Verschränkung im "Lichtknoten" nicht nur dann nichts mehr bleibt, wenn überhaupt kein Laserlicht mehr vorhanden ist. Bereits bei geringen Verlusten ist die Verschränkung zerstört. Es ist dieses Ergebnis, das zu der Veröffentlichung in Science Magazine führte.

Im kommenden Jahr werden die Forschungen zum selben Thema fortgesetzt, erneut in Zusammenarbeit mit der brasilianischen Gruppe. Dann wird es auch in Erlangen Experimente geben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Dr. Alessandro S. Villar
Tel.: 09131/85-28377
Alessandro.Villar@mpl.mpg.de

Ute Missel | idw
Weitere Informationen:
http://www.mpl.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise