Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Institut ebnet künftigen Quantennetzwerken den Weg

21.09.2009
Als gebündelte Lichtstrahlen können Laser verschiedene Farben annehmen. Eine deutsch-brasilianische Forschergruppe nützt dies aus, um Vorbedingungen für künftige Quantennetzwerke zu erarbeiten.

Das Erlanger Max-Planck-Institut für die Physik des Lichts hat zusammen mit der Universität Erlangen-Nürnberg und der Universität von São Paulo ein Projekt zur Verschränkung zwischen drei Laserstrahlen verschiedener Farbe durchgeführt. Das gelungene Experiment beschreiben die Wissenschaftlerinnen und Wissenschaftler in der online-Ausgabe der Fachzeitschrift Science.

Dr. Katiuscia Cassemiro und Dr. Alessandro Villar, beide Post-doc-Forscher am Max-Planck-Institut und dem Institut für Optik, Information und Photonik der Universität, haben von Erlanger Seite Ideen, Berechnungen und Simulationen zu dem Projekt beigesteuert. Die experimentelle Arbeit, also die erforderlichen Messungen, wurden von den Kollegen in Brasilien übernommen.

Nach dem Ausdruck "entangle" für "verwirren, verhaken" wird eine Verschränkung zwischen drei Laserstrahlen mit verschiedenen Farben im Englischen auch "rainbow entanglement" genannt. Ein solches "Regenbogenknäuel" könnte in Zukunft sehr nützlich sein für Quantennetzwerke, die für Aufgaben wie Quantenberechnungen und die Realisierung von Quantenspeichern mehrere Systeme verwenden. Solche Systeme sind zunächst nicht kompatibel; zwischen ihnen können also keine Informationen ausgetauscht werden. Die verschiedenfarbigen, verschränkten Laserstrahlen übernehmen die Übersetzungsaufgabe. Anders gesagt: Jedes Quantenkommunikationsgerät ("Quanten Hardware") in einem zukünftigen Quantennetzwerk wird wahrscheinlich eine unterschiedliche resonante Lichtfrequenz (d. h. Farbe) zum Informationstransfer besitzen. Durch verschränktes Licht mit verschiedenen Frequenzen könnten zwei oder mehr Lichtstrahlen mit den richtigen Frequenzen die Kommunikation verschiedener Systemen sicherstellen.

Mit Verlusten von Licht, die - wenn auch nur in geringen Maß - in einem Quantenkanal ebenso wie in einem klassischen Kanal prinzipiell unvermeidbar sind, befasste sich ein zweiter Teil der Arbeit. Überraschenderweise ergab sich, dass von der Verschränkung im "Lichtknoten" nicht nur dann nichts mehr bleibt, wenn überhaupt kein Laserlicht mehr vorhanden ist. Bereits bei geringen Verlusten ist die Verschränkung zerstört. Es ist dieses Ergebnis, das zu der Veröffentlichung in Science Magazine führte.

Im kommenden Jahr werden die Forschungen zum selben Thema fortgesetzt, erneut in Zusammenarbeit mit der brasilianischen Gruppe. Dann wird es auch in Erlangen Experimente geben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Dr. Alessandro S. Villar
Tel.: 09131/85-28377
Alessandro.Villar@mpl.mpg.de

Ute Missel | idw
Weitere Informationen:
http://www.mpl.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau