Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck fliegt zum Mond

21.10.2008
Die indische Sonde Chandrayaan-1 trägt auch ein Infrarot-Spektrometer aus dem Max-Planck-Institut für Sonnensystemforschung an Bord

Wenn die unbemannte indische Mondsonde Chandrayaan-1 am kommenden Mittwoch um 3 Uhr (MESZ) vom Weltraumbahnhof Satish Dhawan zum Mond startet, ist an Bord auch Technik aus Deutschland: ein Infrarot-Spektrometer aus dem Max-Planck-Institut für Sonnensystem- forschung im niedersächsischen Katlenburg-Lindau. Das Instrument ist der einzige deutsche Beitrag zur Mission und wird dabei helfen, die erste flächendeckende, mineralogische Karte der Mondoberfläche zu erstellen.


Der Mond ist für das Verständnis der Erdgeschichte von großer Bedeutung. Denn obwohl beide Himmelskörper vor etwa 4,5 Milliarden Jahren entstanden sind, haben Plattentektonik, Wetter und nicht zuletzt das Leben die Zeugnisse dieser frühen Phase auf der Erde zum größten Teil ausgelöscht. In der geologischen und mineralogischen Zusammensetzung des Mondes dagegen haben sich diese Hinweise wie in einem Fossil erhalten.

Trotzdem konnten Raumsonden bisher nur einen kleinen Teil der Mondoberfläche erforschen: Die Missionen waren oft auf wenige Monate begrenzt oder mit einer beschränkten Anzahl von Instrumenten ausgestattet. Zudem zeigte sich der Mond den Geräten wegen der stark elliptischen Umlaufbahnen der Sonden aus ständig variierenden Entfernungen.

Chandrayaan-1 wird den Mond nun zwei Jahre lang begleiten. Eine kreisförmige Umlaufbahn in 100 Kilometern Höhe und das Zusammenspiel von mehreren wissenschaftlichen Instrumenten erlauben der Mission einen besonders genauen Blick auf den Erdtrabanten. Das Infrarot-Spektrometer SIR-2 aus dem Max-Planck-Institut für Sonnensystemforschung etwa soll zusammen mit fünf weiteren Instrumenten erkunden, welche Mineralien und Gesteinsarten sich wo auf dem Mond befinden. Auf diese Weise soll die erste hochaufgelöste, mineralogische Karte des gesamten Himmelskörpers entstehen.

SIR-2 nutzt dazu die optischen Eigenschaften der Mineralien im Mondboden aus. Wie die Blätter eines Baumes, die alle Lichtfarben außer Grün verschlucken, absorbiert jedes Mineral das Licht bestimmter Wellenlängen; diese Anteile des Lichts kann das Material nicht ins All zurückwerfen. Um die charakteristischen Lücken im reflektierten Licht zu entdecken, spaltet das Spektrometer die Strahlung, die es vom Mond erreicht, wie ein Prisma in eine Art Regenbogen auf. Aus den fehlenden Wellenlängenbereichen lässt sich so auf die Zusammensetzung der Mondoberfläche schließen.

Da die charakteristischen Farben der Mineralien, die im Sonnensystem am häufigsten vorkommen, jenseits des roten Spektralbereichs im langwelligen Infraroten liegen, ist SIR-2 speziell an diese Wellenlängenbereiche angepasst. Das Instrument ist das Nachfolgemodell eines Infrarot-Spektrometers, das sich bereits im Jahr 2004 bei der europäischen Mondmission SMART-1 bewährt hat. Die Max-Planck-Forscher entwickeln diesen Instrumenten-Typ, der im sichtbaren bis nahen Infraroten operiert, auch für künftige Missionen weiter.

Insgesamt befinden sich elf wissenschaftliche Instrumente an Bord von Chandrayaan-1. Fünf von ihnen stammen aus Indien, die anderen wurden von internationalen Gruppen entwickelt. Einige dieser Geräte sollen etwa eine dreidimensionale, topographische Karte der Mondoberfläche erstellen. Ein weiteres Ziel der Mission ist die Suche nach gefrorenem Wasser. Frühere Missionen hatten Hinweise dafür geliefert, dass es an den Polen des Mondes - an den Rändern einiger Krater - Eis geben könnte.

Die Max-Planck-Gesellschaft und die europäische Raumfahrtagentur ESA haben die Entwicklung und den Bau von SIR-2 maßgeblich finanziell unterstützt. Das Instrument steht somit auch für die wachsende Zusammenarbeit zwischen der Max-Planck-Gesellschaft und Indien. Als Zeichen der Wertschätzung durften die Max-Planck-Forscher als einzige ausländische Wissenschaftler ihr Instrument in Indien kalibrieren.

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie