Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematik macht Moleküldynamik sichtbar

28.04.2016

Neues Rechenverfahren verbessert Zeitauflösung an Röntgenlasern um das 300-Fache.

Mit einem cleveren Rechenverfahren können Forscher die ultraschnellen Bewegungen von Molekülen und andere dynamische Prozesse im Nanokosmos auf eine billiardstel Sekunde genau verfolgen. Einem internationalen Team ist damit ein entscheidender Schritt in der Analyse dynamischer Prozesse gelungen. Ihre Arbeit, die jetzt im Fachjournal „Nature“ erscheint, eröffnet einen vergleichsweise einfachen Weg, elementare Reaktionsabläufe mit einer sehr präzisen Zeitauflösung zu bestimmen.


Dank des neuen Algorithmus lässt sich der Zeitstempel klar erkennen.

Bild: Allie Kilmer/University of Wisconsin - Milwaukee

Das Forscherteam um Projektleiter Professor Abbas Ourmazd von der Universität von Wisconsin in Milwaukee (USA) entwickelte dafür ein Rechenverfahren (Algorithmus), mit dessen Hilfe sich aus Daten von Experimenten an sogenannten Freie-Elektronen-Lasern (FEL) durch geschicktes Extrahieren neue Informationen gewinnen lassen. DESY-Wissenschaftler Professor Robin Santra vom Hamburger Center for Free-Electron Laser Science CFEL und seine Kollegen konnten die Ergebnisse durch quantenmechanische Simulationen bestätigen.

„Die Methode hat ein unglaubliches Potenzial“, erläutert Santra, der auch Professor an der Universität Hamburg ist. Sie ermögliche völlig neue Einblicke in den Ablauf zahlreicher ultraschneller Reaktionen in Chemie und Biochemie bis hin zu elektrochemischen Anwendungen oder industriellen Prozessen. Bereiche, in denen Wissenschaftler bisher über den zeitlichen Ablauf nur spekulieren konnten, was auf mikroskopischer Ebene passiert. „Dynamische Zeitmessungen an FELs unterliegen einer extremen Unschärfe“, erklärt Santra. „Diese neue Datenanalyse erhöht die Genauigkeit um einen Faktor 300 – das ist verblüffend.“

Chemische Reaktionen und Biomolekülbewegungen laufen unvorstellbar schnell ab und entziehen sich unserem natürlichen Sehen. Sie geschehen im Bereich von Femtosekunden, also billiardstel Sekunden. Bisher gibt es keine effektiven Wege, solche molekularen Prozesse detailliert zu beobachten. Moderne Freie-Elektronen-Röntgenlaser ermöglichen zwar Belichtungszeiten im Bereich von Femtosekunden, mit ihnen lassen sich jedoch keine unmittelbaren Filme von dynamischen Prozessen machen, lediglich eine Reihe von Momentaufnahmen zu verschiedenen Zeitpunkten des untersuchten Prozesses.

Der Aufnahmezeitpunkt der Einzelbilder lässt sich allerdings nicht absolut exakt festlegen. Der Grund dafür: Wollen Forscher eine Reaktion untersuchen, lösen sie diese durch einen optischen Laserblitz aus, ein kurz darauf folgender Röntgenlaserblitz schießt einen Schnappschuss davon. Danach ist die Probe jedoch zerstört, und die Reaktion muss in einer neuen, nahezu identischen Probe noch einmal ausgelöst werden.

Der Röntgenlaser blitzt jetzt zu einem etwas späteren Zeitpunkt der Reaktion – und so geht es immer weiter. Als Ergebnis erhalten die Forscher unzählige Momentaufnahmen, die sie anschließen aneinanderreihen müssen wie in einem Daumenkino. Allerdings ist die exakte zeitliche Abfolge der Röntgenlaser-Bilder nicht immer klar erkennbar, Experten bezeichnen diese Genauigkeitsschwankung als Jitter (engl. für „Fluktuation“ oder „Schwankung“). Dieser Jitter kann zu einer falschen Sortierung der Einzelbilder im Daumenkino führen.

Zwölf Millionen Dimensionen

„Die zeitliche Unschärfe ist in vielen Bereichen der Wissenschaft ein Fluch“, sagt Ourmazd. „Man hat zwar eine Menge Daten, aber ohne genauen Zeitstempel.“ Denn damit die Momentaufnahmen den Reaktionsverlauf mit einer Genauigkeit von Femtosekunden dokumentieren können, müssen optischer Laser und Röntgenlaser extrem präzise aufeinander abgestimmt sein. „Alle uns bisher bekannten experimentellen Lösungen haben es nicht geschafft, eine Zeitauflösung von besser als etwa 14 Femtosekunden zu liefern, wobei die meisten lediglich 60 Femtosekunden oder länger erreichen“, sagt Santra.

Daher wählten Ourmazd und sein Team einen anderen Weg: Sie entwickelten einen mathematischen Algorithmus, mit dessen Hilfe sie aus vorhandenen Daten Informationen mit einer zeitlichen Genauigkeit von einer Femtosekunde extrahieren können. Die einzelnen Schnappschüsse mit nicht scharf definiertem Zeitstempel werden dazu mathematisch als einzelne Punkte in einem hochdimensionalen Raum dargestellt – in der jetzt veröffentlichten Arbeit hat dieser Raum rund zwölf Millionen Dimensionen.

Mit Hilfe mathematischer Mustererkennungsprozesse reduzieren die Forscher dann die Zahl der Dimensionen, indem sie gekrümmte mehrdimensionale Flächen suchen, auf denen die Punkte liegen. Ziel ist es dabei, schließlich eine – eindimensionale – Kurve zu finden, auf der alle Punkte liegen. Denn wenn sich die einzelnen Punkte nur durch die Änderung eines Parameters unterscheiden, in diesem Fall der Zeit, dann müssen sie eine Kurve im betrachteten Raum bilden. Gelingt es, diese Kurve zu finden, hat man die Punkte zeitlich geordnet.

In der jetzt veröffentlichten Studie untersuchten die Wissenschaftler mit ihrem Algorithmus Daten einer Forschergruppe um Stanford-Professor Philip Bucksbaum. Bucksbaum und sein Team hatten im Jahr 2010 mit dem Freie-Elektronen-Röntgenlaser LCLS (Linac Coherent Light Source) am SLAC National Accelerator Laboratory in Kalifornien (USA) die Dynamik von doppelt elektrisch geladenen Stickstoffmolekülen erforscht.

Diese ungewöhnlichen Stickstoff-Ionen erzeugten die Wissenschaftler durch den Beschuss mit Röntgenstrahlung. Auch in der Atmosphäre entstehen diese Ionen durch die Wirkung der energiereichen kosmischen Strahlung, die beständig aus dem Weltall auf die Erde einprasselt. Das Ergebnis des Experiments: Eine große Anzahl von Schnappschüssen unterschiedlicher Schwingungszustände intakter und auseinandergebrochener Stickstoffmoleküle, deren zeitliche Reihenfolge jedoch nicht klar erkennbar war. Ourmazd und seinen Kollegen gelang es nun mit Hilfe ihres Algorithmus, die Schwingungsbewegungen der Moleküle mit einer Genauigkeit von einer Femtosekunde zu bestimmen. Damit konnten sie das dynamische Verhalten der Stickstoffmoleküle mit einer um den Faktor 300 verbesserten Präzision rekonstruieren.

Revolutionäre Analysetechnik

Santra und sein Team am CFEL führten anschließend die quantenmechanische Berechnung der untersuchten Prozesse durch und bestätigten die erzielte Genauigkeit von einer Femtosekunde. „Das schließen wir daraus, dass die extrahierten Schwingungsperioden mit exakt dieser Genauigkeit mit unseren quantenmechanischen Rechnungen übereinstimmen“, sagt Santra. Und nicht nur das: Erst durch die Simulationsrechnungen von Santras Team konnten die Forscher überhaupt sagen, woher die im Experiment beobachteten Schwingungen kamen, was sie bedeuten, sowie wann und warum die doppelt geladenen Stickstoffmoleküle auseinanderbrechen.

Mit der neuen Datenanalysetechnik lassen sich nicht nur zukünftige Experimente präziser auswerten. Auch bereits vorhandene Messungen können neu analysiert werden. Einzige Voraussetzung: Die Menge der Daten muss ausreichend sein. Das sei bisher vor allem bei der Untersuchung dreidimensionaler Strukturen problematisch, erläutern die Forscher. Wie beispielsweise in der Kristallographie, wo schon für ein Einzelbild eine Unmenge Röntgenschüsse nötig sind, um einen statistisch signifikanten Datensatz zu erhalten. „Vielleicht wird dieses Problem zukünftig durch den European XFEL gelöst“, sagt Santra. Der 3,4 Kilometer lange Freie-Elektronen-Röntgenlaser, der derzeit im Hamburger Westen gebaut wird, erzeugt noch 100 mal mehr Lichtblitze pro Zeiteinheit als bisherige FELs.

„Diese Methode hat das Zeug, die Forschung an FELs zu revolutionieren“, sagt Santra. Und sie hat einen großen Vorteil: Sie arbeitet nicht mit aufwendigen technischen Lösungen, sondern setzt stattdessen sehr geschickt mathematische Operationen ein. „Dieser Weg ist nicht nur einfacher, sondern auch noch erfolgreicher, weil die Ergebnisse viel exakter sind“, sagt Santra. Der Physiker sieht zahlreiche Anwendungsgebiete. „Die Methode lässt sich als sehr viel präziseres Werkzeug überall dort einsetzen, wo man wissen möchte, wie sich Materie verhält – dynamisch gesehen auf kurzen Zeitskalen.“ Darunter etwa Enzym-Reaktionen aus der Biologie und der Chemie, aber auch die Erforschung ungewöhnlicher Materiezustände, wie sie im Inneren von Planeten und Sternen auftreten. Projektleiter Ourmazd geht noch weiter und hofft, mit seinem Algorithmus eine Vielzahl von Zeitreihen wie etwa vergangene klimatische Ereignisse präziser bestimmen zu können.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Dynamics from noisy data with extreme timing uncertainty; R. Fung, A.M. Hanna, O. Vendrell, S. Ramakrishna, T. Seideman, R. Santra and A. Ourmazd; „Nature”, 2016; DOI: 10.1038/nature17627

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie