Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Masse eines seltsamen Atomkerns mit großer Genauigkeit neu bestimmt

11.06.2015

Messung am Mainzer Teilchenbeschleuniger MAMI soll die „starke Kraft“ verstehen helfen

Einer internationalen Gruppe Physikern ist es am Mainzer Institut für Kernphysik gelungen, die Masse eines „seltsamen“ Atomkerns mit einer neuartigen Messmethode zu bestimmen, die eine wesentlich größere Genauigkeit als bisherige Methoden aufweist.


Ansicht der Experimentierhalle am Teilchenbeschleuniger MAMI. Durch die Verwendung der im Bild zu sehenden magnetischen Spektrometer konnte die Masse eines seltsamen Atomkerns neu vermessen werden.

Abb.: Institut für Kernphysik, JGU

Am Teilchenbeschleuniger MAMI ließ sich der radioaktive Zerfall von künstlich erzeugten, überschweren Wasserstoff-Atomkernen weltweit zum ersten Mal mit einer Kombination mehrerer magnetischer Spektrometer beobachten. Über das genaue Vermessen der Zerfallsprodukte konnte die Masse präzise ermittelt werden.

Solche Messungen sind besonders hilfreich für das Verständnis der „starken Kraft“, welche die Atomkerne zusammenhält und so verantwortlich ist für die Beständigkeit der Materie. Auch nach Jahrzehnten der Forschung sind viele grundsätzliche Details dieser Kraft noch nicht verstanden. Atomkerne der uns alltäglich umgebenden Materie bestehen aus zwei Bausteinen, den positiv geladenen Protonen und den elektrisch neutralen Neutronen.

Diese wirken auf vielfältige Weise miteinander und untereinander. Hauptsächlich herrscht zwischen ihnen eine ungeheure Anziehungskraft, die für die Bindung der Bausteine zu Atomkernen verantwortlich ist. Die Masse des Atomkerns ist dabei geringer als die Summe der Masse seiner Bestandteile. Die „fehlende Masse“ steckt nach Einsteins berühmter Formel E = mc2 in der Energie der Bindungen im Atomkern. Wird die Masse präzise vermessen, lässt sich also die Bindungsenergie bestimmen, und es lassen sich Rückschlüsse auf die Natur der starken Kraft ziehen.

Neben den Protonen und Neutronen können prinzipiell auch andere verwandte Teilchen in einem Atomkern gebunden sein, etwa ein sogenanntes Hyperon, das auch als „seltsames“ Neutron bekannt ist. Einen solchen Atomkern nennt man dann einen seltsamen Atomkern oder auch Hyperkern. An Teilchenbeschleunigern wie MAMI ist es möglich, diese künstlich zu erzeugen.

Seltsame Teilchen können auf der Erde nur für einen Bruchteil einer Sekunde existieren, aber möglicherweise gibt es große Vorkommen tief im Innern von Neutronensternen, die ebenso von der starken Kraft zusammen gehalten werden.

Viele offene Fragen zu diesen spektakulären Sternenleichen aus den Tiefen des Alls sind bislang unbeantwortet: Wie groß sind Neutronensterne? Was befindet sich in ihren nicht beobachtbaren Zentren? Wie heiß und dicht ist es dort? Über das Studium der Hyperkerne lassen sich sonst unzugängliche Details der starken Kräfte bestimmen, welche nicht nur in seltsamen Atomkernen, sondern auch in Neutronensternen wirken. Somit werden die Fragen angegangen, wie man den Aufbau von winzigen Atomkernen und von gigantischen Neutronensternen verstehen kann und wie beides zusammenhängt.

Am Mainzer Mikrotron haben die Wissenschaftler um Univ.-Prof. Dr. Josef Pochodzalla und PD Dr. Patrick Achenbach eine sehr schwere Form des gewöhnlichen Elements Wasserstoff erzeugt, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht.

Dieser künstlich geschaffene seltsame Atomkern hat eine etwa doppelt so große Masse wie die schwerste stabil in der Natur vorkommende Form des Wasserstoffs, das Deuterium. Um die Masse des seltsamen Wasserstoff-Atomkerns möglichst exakt bestimmen zu können, beobachteten die Kernphysiker den radioaktiven Zerfall des Atomkerns erstmals mit mehreren magnetischen Spektrometern zugleich.

Diese Geräte funktionieren hier ähnlich wie Elektronenmikroskope, allerdings in einem viel größeren Maßstab: Sie lenken die Teilchen durch ein starkes Magnetfeld ab und bündeln sie an einer Stelle, an der Teilchendetektoren sie vermessen. Für eine möglichst große Genauigkeit sind die Spektrometer nahezu 15 Meter hoch und wiegen über 200 Tonnen. Weitere Voraussetzung für eine äußerst präzise Messung ist die große Energie, Schärfe und Stabilität des beschleunigten Teilchenstrahls, wie sie an MAMI erreicht wird.

Als Ergebnis der Mainzer Messung konnte die Bindungsenergie des Hyperons im sehr schweren Wasserstoff-Atomkern bestimmt werden. Sie ist etwa gleich groß wie die gesamte Bindungsenergie des Deuterium-Atomkerns. Für die Wissenschaftler ganz besonders spannend ist die noch unbeantwortete Frage, ob diese Bindungsenergie sich verändert, wenn das Hyperon statt in einen Wasserstoff-Atomkern in einen gleich schweren Helium-Atomkern eingebettet wird. Das würde dann bedeuten, dass die Anziehungskraft der Protonen und Neutronen auf das Hyperon im Atomkern unterschiedlich – und die Symmetrie zwischen den Kernbausteinen gebrochen wäre.

Die Ergebnisse wurden im renommierten Fachmagazin Physical Review Letters veröffentlicht.

Veröffentlichung:
A. Esser et al. (Kollaboration A1)
Observation of Λ-H-4 Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering
Physical Review Letters, 9. Juni 2015
DOI: 10.1103/PhysRevLett.114.232501

Weitere Informationen:
PD Dr. Patrick Achenbach
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25777
E-Mail: patrick@kph.uni-mainz.de
http://www.kph.uni-mainz.de

Weiterführende Links:
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.232501

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise