Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maschinenbau auf molekularer Ebene: Nanorotoren setzen sich selbst zusammen

23.11.2010
Wissenschaftlern der Technischen Universität München (TUM) ist es gelungen, stabförmige Moleküle dazu zu bringen, sich selbst zu nur wenige Nanometer großen Rotoren zusammen zu setzen. Die winzigen Systeme dienen der Untersuchung der Kräfte, denen Moleküle auf Oberflächen und in Käfigen ausgesetzt sind. Ihre Ergebnisse veröffentlichen sie in der aktuellen online-Ausgabe der Proceedings of the National Academy of Sciences der USA.
In der Nanowelt ist vieles anders. Der Mensch steht erst am Anfang, ihre Gesetzmäßigkeiten zu erforschen und nutzbar zu machen. Einem Team um Professor Johannes Barth aus dem Physik-Department der TU München ist es nun gelungen, stabförmige Moleküle so in einem zweidimensionalen Netzwerk einzuschließen, dass Sie von selbst kleine Rotoren bilden, die sich in ihren Honigwaben-artigen Käfigen drehen.

Vorbild für solche, sich selbst organisierenden Systeme ist die Natur. Proteine bringen Reaktionspartner so in engste räumliche Nähe, dass Reaktionen ablaufen, die ohne die Zusammenführung nicht möglich wären. Auch der Mensch nutzt solche Effekte, indem er Katalysatoren entwickelt, an deren Oberfläche Reaktionspartner zusammenfinden. Doch der große Traum, Selbstorganisationseffekte so zu nutzen, dass sich Nanomaschinen ganz von alleine zusammenbauen, steht noch in weiter Ferne.

Die in Garching entwickelten Rotoren sind ein erfolgreicher Schritt in diese Richtung. Zunächst bauten die Physiker ein riesiges Nanonetzwerk auf, indem sie Kobalt-Atome und ein stäbchenförmiges Molekül namens Sexiphenyl-Dicarbonitril auf einer Silberoberfläche miteinander reagieren ließen. Dabei entsteht ein riesiges Honigwaben-artiges Netzwerk, das eine erstaunlich hohe Stabilität besitzt. Ähnlich dem Graphen, dessen Entdecker vor wenigen Wochen den Nobelpreis erhielten, ist dieses Netzwerk nur exakt eine Atomlage dick.

Als die Forscher weitere Stäbchen-Moleküle zugaben, sammelten sich plötzlich spontan meist drei Stäbchen in einer Wabe, während benachbarte Waben leer blieben. Die geselligen Moleküle mussten also einen Vorteil davon haben, sich jeweils zu Dritt zu organisieren. Unter einem Rastertunnel-Mikroskop konnten die Forscher sehen, warum das der Fall war. Die drei Moleküle ordneten sich jeweils so an, dass die drei Stickstoff-Enden gegenüber einem Wasserstoff-Atom platziert waren. Diese Anordnung in Form eines dreiflügeligen Rotors ist energetisch so vorteilhaft, dass die Moleküle zusammenbleiben, selbst wenn thermische Energie das Trio in seinem Käfig zur Rotation anregt.

Da ihr Waben-Käfig aber nicht rund sondern sechseckig ist, gibt es für die Rotoren zwei verschiedene Positionen, die aufgrund der Wechselwirkungen der äußeren Stickstoffatome mit den Atomen der Käfigwand unterscheidbar werden. Darüber hinaus können die drei Moleküle rechtsdrehend und linksdrehend angeordnet sein. Durch Versuche bei verschiedenen Temperaturen konnten die Physiker alle vier Zustände „einfrieren“ und genau untersuchen. Aus der Temperatur, bei der die Rotation beim Aufwärmen wieder einsetzte, konnten sie die Energieschwelle für eine Drehung der Nanorotoren berechnen.

„In der Zukunft hoffen wir, diese einfachen mechanischen Modelle auf optisches oder elektronisches Schalten ausdehnen zu können,“ sagt Professor Johannes Barth. „Wir können die Käfiggröße gezielt festlegen oder auch gezielt weitere Moleküle einbringen und deren Wechselwirkungen mit der Oberfläche und der Käfigwand studieren. Diese sich selbst organisierenden, dynamischen Nanosysteme haben ein enormes Potenzial. “

Die Arbeiten wurden unterstützt aus Mitteln der Europäischen Union (ERC Advanced Grant MolArt) sowie dem Institute for Advanced Study (TUM-IAS), der International Graduate School for Science and Engineering (IGSSE) und dem Zentralinstitut für Katalyseforschung (CRC) der TU München. Die Publikation entstand in Zusammenarbeit mit Wissenschaftlern des Instituts für Nanotechnologie des Karlsruher Institutes für Technologie und des Institute de Physique et Chimie des Materiaux der Universität Strasbourg.

Originalpublikation:

Rotational and constitutional dynamics of caged supramolecules, Dirk Kühne, Florian Klappenberger, Wolfgang Krenner, Svetlana Klyatskaya, Mario Ruben und Johannes V. Barth, PNAS Early Edition (online in der Woche ab dem 22.11.2010)

http://www.pnas.org/content/early/2010/11/15/1008991107.abstract

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Fakultät für Physik, E20
James-Franck-Str. 1
85748 Garching, Germany
Tel: +49 89 289 12608
Fax: +49 89 289 12338
E-Mail: jvb@ph.tum.de
Internet: http://www.e20.physik.tu-muenchen.de/
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und rund 25.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

| Technische Universität München
Weitere Informationen:
http://www.e20.physik.tu-muenchen.de/
http://mediatum.ub.tum.de/?cfold=1003997&dir=1003997&id=1003997
http://www.forschung-garching.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit