Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man einen Nano-Schnurrbart wachsen lässt

16.05.2013
Nanotechnologie basiert auf der Herstellung von erstaunlich kleinen Materialstrukturen, den Nano-Strukturen. Physikern an der Universität Wien ist es nun gelungen, eine einzigartige Nano-Struktur aus Kohlenstoff zu züchten, die einem winzigen gezwirbelten Schnurrbart ähnelt.

Ihre Methode könnte wegweisend für die Bildung komplexerer Nano-Netzwerke sein. Die Forscher der Gruppe "Elektronische Materialeigenschaften" an der Fakultät für Physik und ihre internationalen KollegInnen veröffentlichten ihre Ergebnisse im neuen Open Access Journal des renommierten Verlagshauses Nature: Scientific Reports.


Die einzigartige Form des Kohlenstoff-Nano-Schnurrbarts – einem der wenigen inorganischen Beispiele, welches ForscherInnen erfolgreich züchten und kontrollieren konnten und bei dem sie eine bilaterale Ausformung beobachten konnten – wird mithilfe eines Elektronenmikroskops sichtbar
Copyright: Shiozawa/EMP, Universität Wien

Nano-Materialien weisen einzigartige Eigenschaften auf, die nur dann zur Geltung kommen, wenn die Materialstrukturen winzig klein, d.h. auf der Nano-Skala, sind. Um sich diese besonderen Eigenschaften wie z.B. spezielle Quanteneffekte zunutze zu machen, ist es wichtig, vordefinierte Nano-Strukturen gezielt herzustellen und erklären zu können, wieso diese eine bestimmte Form annehmen. WissenschafterInnen wollen daher genau verstehen, wie man das Wachstum von Nano-Materialien auslösen und steuern kann und verfolgen verschiedene Strategien, um Nano-Strukturen zu entwickeln und deren Wachstum zu kontrollieren. Im großen Vorbild Natur wachsen viele organische Formen bilateral, das heißt symmetrisch in zwei unterschiedliche Richtungen.

Einem internationalen Forscherteam von der Universität Wien, der Universität Surrey (UK) und des IFW Dresden (Deutschland) gelang nun unter Anwendung einer neuartigen Methode die bilaterale Züchtung von inorganischen Nano-Materialien in einer kontrollierten Umgebung.

Die Bedeutung von Nano-Schnurrbärten

Die WissenschafterInnen setzten ein Gas mit Kohlenstoff- und Eisen-Atomen bei hohen Temperaturen solange unter Druck, bis sie beobachteten, wie ganz spontan zwei Arme aus Kohlenstoff-Atomen von einem Eisenkern ausgehend zu wachsen begannen. Bei ausreichend kleinen Eisenkernen fingen die Kohlenstoff-Arme an, sich an ihren Enden spiralförmig einzudrehen, sodass die ganze Nano-Struktur eine verblüffende Ähnlichkeit mit einem gezwirbelten Schnurrbart aufweist. "Die ermutigenden Erkenntnisse aus unseren Experimenten bieten einen sehr guten Ausgangspunkt für die kontrollierte Herstellung von außergewöhnlichen neuen Materialien mit vordefinierten Nano-Strukturen", betont Hidetsugu Shiozawa, Erstautor der Publikation und Forscher an der Fakultät für Physik der Universität Wien.

Nützliche "Fehler"

Um mehr über den internen Aufbau der Nano-Schnurrbärte herauszufinden, schnitten die ForscherInnen ihr Nano-Material in extrem dünne Scheiben und benützten ein spezielles Mikroskop –ein Transmissionselektronenmikroskop –, das ihnen einen genaueren Blick in die Scheiben ermöglichte. Wenn sich Nano-Strukturen ausbilden, entstehen strukturelle Fehlstellen im Material, die etwas über ihren Wachstumsprozess verraten. Die Art und Weise, wie die strukturellen Fehlstellen im beobachteten Fischgrätmuster der aufgeschnittenen Nano-Schnurrbärte verteilt waren, erlaubte den WissenschafterInnen einen Blick in die Vergangenheit und lieferte weitere Informationen über die Bildung des Nano-Materials. Für künftige Anwendungen ist es wichtig, diese Erkenntnisse auf das Wachstum von Nano-Strukturen in zwei oder drei Dimensionen zu übertragen, um so regelmäßige Muster und Netzwerke auf der Nano-Skala herzustellen.

Die WissenschafterInnen haben es sich deshalb zum Ziel gesetzt, noch mehr über den Mechanismus zu erfahren, der hinter der Ausformung der Nano-Schnurrbärte steckt und wollen in künftigen Forschungsprojekten mehrdimensionale und noch komplexere Nano-Strukturen züchten.

Wissenschaftliche Publikation:

"Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core":
Hidetsugu Shiozawa, Alicja Bachmatiuk, Andreas Stangl, David C. Cox, S. Ravi P. Silva, Mark H. Rümmeli & Thomas Pichler
Scientific Reports 3, Article number: 1840
doi:10.1038/srep01840
Veröffentlicht am 14. Mai 2013

Wissenschaftliche Kontakte:
Dr. Hidetsugu Shiozawa
Electronic Properties of Materials
Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
M +43-664-602 77-726 28
hidetsugu.shiozawa@univie.ac.at
http://epm.univie.ac.at

Univ.-Prof. Mag. Dr. Thomas Pichler
Electronic Properties of Materials
Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
T +43-664-602 77-514 66
thomas.pichler@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie