Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man einen Nano-Schnurrbart wachsen lässt

16.05.2013
Nanotechnologie basiert auf der Herstellung von erstaunlich kleinen Materialstrukturen, den Nano-Strukturen. Physikern an der Universität Wien ist es nun gelungen, eine einzigartige Nano-Struktur aus Kohlenstoff zu züchten, die einem winzigen gezwirbelten Schnurrbart ähnelt.

Ihre Methode könnte wegweisend für die Bildung komplexerer Nano-Netzwerke sein. Die Forscher der Gruppe "Elektronische Materialeigenschaften" an der Fakultät für Physik und ihre internationalen KollegInnen veröffentlichten ihre Ergebnisse im neuen Open Access Journal des renommierten Verlagshauses Nature: Scientific Reports.


Die einzigartige Form des Kohlenstoff-Nano-Schnurrbarts – einem der wenigen inorganischen Beispiele, welches ForscherInnen erfolgreich züchten und kontrollieren konnten und bei dem sie eine bilaterale Ausformung beobachten konnten – wird mithilfe eines Elektronenmikroskops sichtbar
Copyright: Shiozawa/EMP, Universität Wien

Nano-Materialien weisen einzigartige Eigenschaften auf, die nur dann zur Geltung kommen, wenn die Materialstrukturen winzig klein, d.h. auf der Nano-Skala, sind. Um sich diese besonderen Eigenschaften wie z.B. spezielle Quanteneffekte zunutze zu machen, ist es wichtig, vordefinierte Nano-Strukturen gezielt herzustellen und erklären zu können, wieso diese eine bestimmte Form annehmen. WissenschafterInnen wollen daher genau verstehen, wie man das Wachstum von Nano-Materialien auslösen und steuern kann und verfolgen verschiedene Strategien, um Nano-Strukturen zu entwickeln und deren Wachstum zu kontrollieren. Im großen Vorbild Natur wachsen viele organische Formen bilateral, das heißt symmetrisch in zwei unterschiedliche Richtungen.

Einem internationalen Forscherteam von der Universität Wien, der Universität Surrey (UK) und des IFW Dresden (Deutschland) gelang nun unter Anwendung einer neuartigen Methode die bilaterale Züchtung von inorganischen Nano-Materialien in einer kontrollierten Umgebung.

Die Bedeutung von Nano-Schnurrbärten

Die WissenschafterInnen setzten ein Gas mit Kohlenstoff- und Eisen-Atomen bei hohen Temperaturen solange unter Druck, bis sie beobachteten, wie ganz spontan zwei Arme aus Kohlenstoff-Atomen von einem Eisenkern ausgehend zu wachsen begannen. Bei ausreichend kleinen Eisenkernen fingen die Kohlenstoff-Arme an, sich an ihren Enden spiralförmig einzudrehen, sodass die ganze Nano-Struktur eine verblüffende Ähnlichkeit mit einem gezwirbelten Schnurrbart aufweist. "Die ermutigenden Erkenntnisse aus unseren Experimenten bieten einen sehr guten Ausgangspunkt für die kontrollierte Herstellung von außergewöhnlichen neuen Materialien mit vordefinierten Nano-Strukturen", betont Hidetsugu Shiozawa, Erstautor der Publikation und Forscher an der Fakultät für Physik der Universität Wien.

Nützliche "Fehler"

Um mehr über den internen Aufbau der Nano-Schnurrbärte herauszufinden, schnitten die ForscherInnen ihr Nano-Material in extrem dünne Scheiben und benützten ein spezielles Mikroskop –ein Transmissionselektronenmikroskop –, das ihnen einen genaueren Blick in die Scheiben ermöglichte. Wenn sich Nano-Strukturen ausbilden, entstehen strukturelle Fehlstellen im Material, die etwas über ihren Wachstumsprozess verraten. Die Art und Weise, wie die strukturellen Fehlstellen im beobachteten Fischgrätmuster der aufgeschnittenen Nano-Schnurrbärte verteilt waren, erlaubte den WissenschafterInnen einen Blick in die Vergangenheit und lieferte weitere Informationen über die Bildung des Nano-Materials. Für künftige Anwendungen ist es wichtig, diese Erkenntnisse auf das Wachstum von Nano-Strukturen in zwei oder drei Dimensionen zu übertragen, um so regelmäßige Muster und Netzwerke auf der Nano-Skala herzustellen.

Die WissenschafterInnen haben es sich deshalb zum Ziel gesetzt, noch mehr über den Mechanismus zu erfahren, der hinter der Ausformung der Nano-Schnurrbärte steckt und wollen in künftigen Forschungsprojekten mehrdimensionale und noch komplexere Nano-Strukturen züchten.

Wissenschaftliche Publikation:

"Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core":
Hidetsugu Shiozawa, Alicja Bachmatiuk, Andreas Stangl, David C. Cox, S. Ravi P. Silva, Mark H. Rümmeli & Thomas Pichler
Scientific Reports 3, Article number: 1840
doi:10.1038/srep01840
Veröffentlicht am 14. Mai 2013

Wissenschaftliche Kontakte:
Dr. Hidetsugu Shiozawa
Electronic Properties of Materials
Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
M +43-664-602 77-726 28
hidetsugu.shiozawa@univie.ac.at
http://epm.univie.ac.at

Univ.-Prof. Mag. Dr. Thomas Pichler
Electronic Properties of Materials
Faculty of Physics, University of Vienna
Boltzmanngasse 5, 1090 Vienna
T +43-664-602 77-514 66
thomas.pichler@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics