Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetwirbel in Nano-Scheiben geben Informationen preis

03.03.2015

Erstmals ist es gelungen, die Ausrichtung von Magnetwirbeln in Nano-Scheiben elektrisch auszulesen. Ein Team aus Forschern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), des Forschungszentrums Jülich (FZJ) und des französischen Centre National de la Recherche Scientifique (CNRS, Straßburg) nutzte dafür charakteristische Mikrowellen, die von den Wirbeln ausgehen. Mit dem neuen Wissen über diese Signale könnten die extrem kleinen Bauteile für neuartige Speicher und drahtlose Datenübertragung eingesetzt werden. Die Ergebnisse der Untersuchungen werden jetzt in der Fachzeitschrift Nature Communications (DOI: 10.1038/ncomms7409) veröffentlicht.

Die innere Spin-Anordnung der Elektronen in magnetischen Nano-Scheiben steht schon seit einigen Jahren im Zentrum der wissenschaftlichen Aufmerksamkeit. Der Elektronenspin ist die Eigendrehung des Teilchens um eine feste Achse. Dieser Spin verursacht ein magnetisches Moment des Elektrons, das unter anderem dafür sorgt, dass zum Beispiel Eisen magnetisch ist.


Vier Beispiele der untersuchten Doppelwirbel-Zustände mit entgegengesetzten Drehrichtungen der Wirbel. Die gelben, flachen Pfeile in den Scheiben stellen die Drehrichtung der Magnet

HZDR/FZJ

Dort nämlich sind die Spins aller Elektronen parallel zueinander ausgerichtet. Bei sehr dünnen und kleinen Schichten, den Nano-Scheiben, kann es jedoch auch zu einer wirbelförmigen Anordnung kommen. Seit Forscher von dieser komplexeren Struktur wissen, versuchen sie, diese Eigenschaften für äußerst platz- und energiesparende Datenspeicher zu nutzen. Die könnten zum Beispiel in Smartphones und Laptops zum Einsatz kommen, wenn es gelingt, gespeicherte Informationen abzurufen.

In Nano-Scheiben sind die Spins so angeordnet, als hätte man gewöhnliche Stabmagneten in einem Kreis aneinandergereiht. Im Kern der Scheibe funktioniert diese Ordnung jedoch nicht mehr, weshalb sich die Magnete aus der Ebene heraus nach oben oder unten ausrichten. „Über diese beiden Eigenschaften, die Drehrichtung in der Ebene und die magnetische Orientierung im Kern, lassen sich Informationen speichern“, erklärt Dr. Attila Kákay, der vor kurzem vom Forschungszentrum Jülich nach Dresden wechselte. „Damit können wir pro Wirbel bereits zwei Bit an Informationen speichern. Werden zwei dieser Wirbelmagnete übereinander gestapelt, sind es bereits vier Bit, also ein System mit 16 verschiedenen Zuständen.“

Kern der Nano-Scheiben ist zu winzig für herkömmliche Auslesemethoden

Ein solches Doppelwirbel-Türmchen ist dann gerade mal 50 Nanometer hoch und hat einen Durchmesser von nur 150 Nanometern – fast tausend Mal dünner als ein menschliches Haar. Doch während die Drehrichtung der Wirbel und die Kernorientierung noch recht einfach durch Ströme und Magnetfelder beeinflusst werden können, war die geringe Größe der Nano-Scheiben beim Auslesen der Informationen bislang ein Hindernis:

„Die magnetische Orientierung im Kern, die sogenannte Polarität, konnte nicht verlässlich gelesen werden, weil der Kern einfach zu winzig ist“, so Dr. Kákay. Bei Experimenten in Jülich fanden die Forscher dafür jedoch eine Lösung: Mikrowellen. Diese elektrischen Wechselspannungssignale erzeugt ein Doppelwirbel bei angelegtem Gleichstrom. Die spezifischen Frequenzen der Mikrowellen nutzen die Physiker nun, um die Polarität und die Drehrichtung der Wirbel zu bestimmen.

„Das Prinzip ähnelt dem einer Blockflöte: Auch bei dem Musikinstrument korrespondiert jeder Griff auf die Tonlöcher eindeutig mit einer ganz bestimmten Tonlage, also Schwingungsfrequenz“, erklärt Dr. Alina Deac, Leiterin der Helmholtz-Nachwuchsgruppe für Spinelektronik am HZDR.

Mit dem neuen Prinzip haben die Wissenschaftler aus Dresden, Jülich und Straßburg Nano-Bauteile entworfen, die nicht nur Informationen mit Hilfe der Magnetwirbel speichern, sondern die auch zuverlässig elektrisch ausgelesen werden können. In Zukunft könnten damit weitaus mehr Daten auf immer kleineren Speicherbausteinen untergebracht werden und in moderner Elektrotechnik zur Anwendung kommen. Zudem kann die Frequenz der Wechselspannung bis in den Gigahertz-Bereich reichen, was die ultraschnelle, drahtlose Übertragung von Informationen möglich macht, zum Beispiel beim Mobilfunk oder im WLAN.

Publikation: Publikation: V. Sluka [1,4], A. Kákay [1], A. M. Deac[1], D. E. Bürgler[2], C. M. Schneider[2], R. Hertel[3], „Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices”, in: Nature Communications, im Druck, DOI: 10.1038/ncomms7409
[1] – Helmholtz-Zentrum Dresden-Rossendorf, früher Mitarbeiter des Forschungszentrums Jülich
[2] – Forschungszentrum Jülich
[3] – CNRS; früher Mitarbeiter des Forschungszentrums Jülich
[4] – inzwischen Postdoc an der New York University

Weitere Informationen:
Dr. Attila Kákay | Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2689 | E-Mail: a.kakay@hzdr.de

Dr. Daniel E. Bürgler | Peter Grünberg Institut (PGI-6) am FZJ
Tel. +49 2461 61-4214 | E-Mail: d.buergler@fz-juelich.de

Medienkontakte:
Christine Bohnet | Pressesprecherin | Tel. +49 351 260-2450 | Mobil: 0160 969 288 56 | c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | www.hzdr.de

Tobias Schlößer | Pressereferent | Tel. +49 2461 61-4771 | t.schloesser@fz-juelich.de
Forschungszentrum Jülich | www.fz-juelich.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung und stellt sich drängenden Fragen der Gegenwart. Mit seinen Kompetenzen in der Materialforschung und Simulation und seiner Expertise in der Physik, der Nano- und Informationstechnologie sowie den Biowissenschaften und der Hirnforschung entwickelt es die Grundlagen für zukünftige Schlüsseltechnologien. Damit leistet das Forschungszentrum Beiträge zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Energie und Umwelt sowie Information und Gehirn.
Das Forschungszentrum Jülich geht neue Wege in strategischen Partnerschaften mit Hochschulen, Forschungseinrichtungen und der Industrie im In- und Ausland. Mit mehr als 5.000 Mitarbeiterinnen und Mitarbeitern gehört es als Mitglied der Helmholtz-Gemeinschaft zu den großen interdisziplinären Forschungszentren Europas.

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise