Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetwirbel in Nano-Scheiben geben Informationen preis

03.03.2015

Erstmals ist es gelungen, die Ausrichtung von Magnetwirbeln in Nano-Scheiben elektrisch auszulesen. Ein Team aus Forschern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), des Forschungszentrums Jülich (FZJ) und des französischen Centre National de la Recherche Scientifique (CNRS, Straßburg) nutzte dafür charakteristische Mikrowellen, die von den Wirbeln ausgehen. Mit dem neuen Wissen über diese Signale könnten die extrem kleinen Bauteile für neuartige Speicher und drahtlose Datenübertragung eingesetzt werden. Die Ergebnisse der Untersuchungen werden jetzt in der Fachzeitschrift Nature Communications (DOI: 10.1038/ncomms7409) veröffentlicht.

Die innere Spin-Anordnung der Elektronen in magnetischen Nano-Scheiben steht schon seit einigen Jahren im Zentrum der wissenschaftlichen Aufmerksamkeit. Der Elektronenspin ist die Eigendrehung des Teilchens um eine feste Achse. Dieser Spin verursacht ein magnetisches Moment des Elektrons, das unter anderem dafür sorgt, dass zum Beispiel Eisen magnetisch ist.


Vier Beispiele der untersuchten Doppelwirbel-Zustände mit entgegengesetzten Drehrichtungen der Wirbel. Die gelben, flachen Pfeile in den Scheiben stellen die Drehrichtung der Magnet

HZDR/FZJ

Dort nämlich sind die Spins aller Elektronen parallel zueinander ausgerichtet. Bei sehr dünnen und kleinen Schichten, den Nano-Scheiben, kann es jedoch auch zu einer wirbelförmigen Anordnung kommen. Seit Forscher von dieser komplexeren Struktur wissen, versuchen sie, diese Eigenschaften für äußerst platz- und energiesparende Datenspeicher zu nutzen. Die könnten zum Beispiel in Smartphones und Laptops zum Einsatz kommen, wenn es gelingt, gespeicherte Informationen abzurufen.

In Nano-Scheiben sind die Spins so angeordnet, als hätte man gewöhnliche Stabmagneten in einem Kreis aneinandergereiht. Im Kern der Scheibe funktioniert diese Ordnung jedoch nicht mehr, weshalb sich die Magnete aus der Ebene heraus nach oben oder unten ausrichten. „Über diese beiden Eigenschaften, die Drehrichtung in der Ebene und die magnetische Orientierung im Kern, lassen sich Informationen speichern“, erklärt Dr. Attila Kákay, der vor kurzem vom Forschungszentrum Jülich nach Dresden wechselte. „Damit können wir pro Wirbel bereits zwei Bit an Informationen speichern. Werden zwei dieser Wirbelmagnete übereinander gestapelt, sind es bereits vier Bit, also ein System mit 16 verschiedenen Zuständen.“

Kern der Nano-Scheiben ist zu winzig für herkömmliche Auslesemethoden

Ein solches Doppelwirbel-Türmchen ist dann gerade mal 50 Nanometer hoch und hat einen Durchmesser von nur 150 Nanometern – fast tausend Mal dünner als ein menschliches Haar. Doch während die Drehrichtung der Wirbel und die Kernorientierung noch recht einfach durch Ströme und Magnetfelder beeinflusst werden können, war die geringe Größe der Nano-Scheiben beim Auslesen der Informationen bislang ein Hindernis:

„Die magnetische Orientierung im Kern, die sogenannte Polarität, konnte nicht verlässlich gelesen werden, weil der Kern einfach zu winzig ist“, so Dr. Kákay. Bei Experimenten in Jülich fanden die Forscher dafür jedoch eine Lösung: Mikrowellen. Diese elektrischen Wechselspannungssignale erzeugt ein Doppelwirbel bei angelegtem Gleichstrom. Die spezifischen Frequenzen der Mikrowellen nutzen die Physiker nun, um die Polarität und die Drehrichtung der Wirbel zu bestimmen.

„Das Prinzip ähnelt dem einer Blockflöte: Auch bei dem Musikinstrument korrespondiert jeder Griff auf die Tonlöcher eindeutig mit einer ganz bestimmten Tonlage, also Schwingungsfrequenz“, erklärt Dr. Alina Deac, Leiterin der Helmholtz-Nachwuchsgruppe für Spinelektronik am HZDR.

Mit dem neuen Prinzip haben die Wissenschaftler aus Dresden, Jülich und Straßburg Nano-Bauteile entworfen, die nicht nur Informationen mit Hilfe der Magnetwirbel speichern, sondern die auch zuverlässig elektrisch ausgelesen werden können. In Zukunft könnten damit weitaus mehr Daten auf immer kleineren Speicherbausteinen untergebracht werden und in moderner Elektrotechnik zur Anwendung kommen. Zudem kann die Frequenz der Wechselspannung bis in den Gigahertz-Bereich reichen, was die ultraschnelle, drahtlose Übertragung von Informationen möglich macht, zum Beispiel beim Mobilfunk oder im WLAN.

Publikation: Publikation: V. Sluka [1,4], A. Kákay [1], A. M. Deac[1], D. E. Bürgler[2], C. M. Schneider[2], R. Hertel[3], „Spin-torque-induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices”, in: Nature Communications, im Druck, DOI: 10.1038/ncomms7409
[1] – Helmholtz-Zentrum Dresden-Rossendorf, früher Mitarbeiter des Forschungszentrums Jülich
[2] – Forschungszentrum Jülich
[3] – CNRS; früher Mitarbeiter des Forschungszentrums Jülich
[4] – inzwischen Postdoc an der New York University

Weitere Informationen:
Dr. Attila Kákay | Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 260-2689 | E-Mail: a.kakay@hzdr.de

Dr. Daniel E. Bürgler | Peter Grünberg Institut (PGI-6) am FZJ
Tel. +49 2461 61-4214 | E-Mail: d.buergler@fz-juelich.de

Medienkontakte:
Christine Bohnet | Pressesprecherin | Tel. +49 351 260-2450 | Mobil: 0160 969 288 56 | c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | www.hzdr.de

Tobias Schlößer | Pressereferent | Tel. +49 2461 61-4771 | t.schloesser@fz-juelich.de
Forschungszentrum Jülich | www.fz-juelich.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung und stellt sich drängenden Fragen der Gegenwart. Mit seinen Kompetenzen in der Materialforschung und Simulation und seiner Expertise in der Physik, der Nano- und Informationstechnologie sowie den Biowissenschaften und der Hirnforschung entwickelt es die Grundlagen für zukünftige Schlüsseltechnologien. Damit leistet das Forschungszentrum Beiträge zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Energie und Umwelt sowie Information und Gehirn.
Das Forschungszentrum Jülich geht neue Wege in strategischen Partnerschaften mit Hochschulen, Forschungseinrichtungen und der Industrie im In- und Ausland. Mit mehr als 5.000 Mitarbeiterinnen und Mitarbeitern gehört es als Mitglied der Helmholtz-Gemeinschaft zu den großen interdisziplinären Forschungszentren Europas.

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik