Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetwirbel-Antennen für drahtlose Datenwege

06.05.2013
Dreidimensionale Magnetwirbel entdeckten Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Paul Scherrer Instituts (PSI) im Rahmen einer internationalen Kooperation.

Die Ergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.110.177201). Wirbelzustände sind mögliche Antennen für die ultraschnelle, drahtlose Datenübertragung der Zukunft.


Zwischen zwei magnetischen Schichten bilden sich um eine nichtmagnetische Zwischenschicht herum statische dreidimensionale Magnetwirbel. Sie stabilisieren die Magnetisierungsrichtung im Wirbelkern in der Mitte – eine Voraussetzung für stabile Wirbelantennen für die drahtlose Datenübertragung. Foto: HZDR / Sander Münster 3Dkosmos

„Magnetische Wirbelzustände wurden bisher nur in zwei Dimensionen, also innerhalb einer Fläche, beobachtet“, erklärt Sebastian Wintz, Physiker am Helmholtz-Zentrum Dresden-Rossendorf. Sie treten typischerweise in nanometerkleinen Magnetscheiben auf.

In einer Kooperation untersuchte Wintz nun mit Kollegen des Schweizerischen Paul Scherrer Instituts dreidimensionale magnetische Schichtsysteme: Die Forscher stapelten jeweils zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander. Der spezielle Aufbau führt dazu, dass sich alle um die Zwischenschicht herumliegenden Magnete zu gleichgerichteten, dreidimensionalen Wirbeln anordnen – eine vollkommen neue Beobachtung.

Die Magnetwirbel helfen den Forschern, magnetische Materialien grundlegend besser zu verstehen. Sie bieten aber auch vielversprechende Anwendungen, zum Beispiel in der Informations- und Kommunikationstechnologie. „Die dreidimensionalen Magnetwirbel könnten stabile und leistungsstarke Antennen für die ultraschnelle, drahtlose Übertragung von Informationen ermöglichen, zum Beispiel beim Mobilfunk oder W-Lan“, sagt Wintz. Warum das so ist, verrät ein genauerer Blick in eine einzelne Magnetscheibe sowie das am HZDR hergestellte magnetische Schichtsystem.

In einer Magnetscheibe sind alle Magnete – wie einzelne Stabmagnete hintereinander – im Kreis angeordnet. Auch wenn sich die Magnete nicht bewegen, sprechen Wissenschaftler von Magnetwirbeln, eben „statischen“. In der Mitte der Magnetscheiben, dem Wirbelkern, können sich die Magnete nicht weiter im Kreis ausrichten; sie zeigen aus ihm heraus, entweder nach oben oder nach unten. Ein solcher Magnetwirbel eignet sich als Antenne für die drahtlose Datenübertragung: Legt man einen Gleichstrom an, fängt der Wirbelkern an, sich im Kreis zu drehen. Dabei strahlt er charakteristische elektromagnetische Wellen ab. Wird die Geschwindigkeit aber zu hoch, wird das System instabil, die Magnetisierungsrichtung klappt um und die Funkwelle wird unterbrochen. Die Magnete im Wirbelkern richten sich nun in entgegengesetzter Richtung aus, beginnen wieder sich zu drehen und senden erneut Wellen aus – bis die Geschwindigkeit wieder zu hoch wird. Eine kontinuierliche Datenübertragung ist damit also nicht möglich.

Das ist anders, wenn man zwei Magnetscheiben, getrennt durch eine dünne nichtmagnetische Metallschicht, übereinander stapelt. Die Struktur ist extrem flach; jede Magnetscheibe ist ca. zehn Nanometer dick und hat einen Durchmesser von etwa 500 Nanometern. Die Zwischenschicht kann dazu führen, dass in jeder Magnetscheibe die Magnete nicht genau im Kreis zeigen, sondern entweder leicht Richtung Wirbelkern geneigt sind oder nach außen. Je näher die Magnete an der Metallschicht liegen, desto mehr sind sie außerdem in Richtung dieser Barriere gekippt. Und zwar so, dass alle – sowohl über als auch unter der Zwischenschicht – in die gleiche Richtung zeigen: Die Magnete bilden zwischen Kern und äußerem Rand einen statischen, dreidimensionalen Wirbel um die Metallschicht herum.

Da die Magnete ganz innen fast senkrecht liegen und benachbarte Magnete immer in die gleiche Richtung zeigen, sind auch die senkrecht stehenden Magnete in den Wirbelkernen zweier übereinanderliegender Magnetscheiben stets gleich ausgerichtet: Sie folgen dabei der Richtung des Magnetwirbels. Ein einfaches Umklappen der Magnete ist dadurch nicht mehr möglich. „Die dreidimensionalen Magnetwirbel stabilisieren die Magnetisierung im Wirbelkern. Magnetische Schichtsysteme, wie die von uns hergestellten, eignen sich deshalb vermutlich für Wirbelantennen besser als vergleichbare Einzelschichten“, fasst Sebastian Wintz zusammen. Selbst bei hohen Drehgeschwindigkeiten bleibt die magnetische Richtung im Wirbelkern so erhalten. „Es ist denkbar, Frequenzen von mehr als einem Gigahertz, also eine Milliarde Umdrehungen pro Sekunde, zu erreichen. In diesem Bereich arbeiten zum Beispiel W-Lan-Netze“, so Wintz weiter.

Um die Magnetscheiben mit hauchdünner metallischer Zwischenschicht herzustellen, nutzte er die Elektronenstrahl-Lithografie am HZDR. „Wir haben das seltene Metall Rhodium benutzt und schließlich die gewünschten Eigenschaften erreicht, indem wir die Dicke und Rauigkeit der Schichten verändert haben“. Die Magnetwirbel kamen an der Synchrotron Lichtquelle Schweiz (SLS) des Schweizerischen Paul Scherrer Instituts zum Vorschein. Synchrotronlicht ist eine besonders intensive Form von Licht, das in seinen Eigenschaften genau an die Bedürfnisse eines Experiments angepasst werden kann. Die Arbeitsgruppe von Jörg Raabe betreibt an der SLS ein Raster-Transmissions-Röntgen-Mikroskop, es kann Magnetisierungsrichtungen mit einer Auflösung von 20 Nanometern direkt abbilden und die Signale zweier verschiedener magnetischer Schichten voneinander trennen. Mit der gleichen Methode wollen die Forscher als nächstes das Verhalten der Magnetscheiben-Paare als hochfrequente Wirbelantennen untersuchen.
Publikation:
S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann, J. Fassbender, „Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements“, Phys. Rev. Lett. 110 (2013). DOI: 10.1103/PhysRevLett.110.177201
Weitere Informationen:

Helmholtz-Zentrum Dresden-Rossendorf
Institut für Ionenstrahlphysik und Materialforschung
Sebastian Wintz | Prof. Dr. Jürgen Faßbender, Institutsdirektor
Tel. 0351 260 2919 | Tel. 0351 260 2919
s.wintz@hzdr.de | j.fassbender@hzdr.de

Paul Scherrer Institut
Synchrotron Radiation and Nanotechnology
Dr. Jörg Raabe
Tel. +41 56310 5193
joerg.raabe@psi.ch
Medienkontakt:

Helmholtz-Zentrum Dresden-Rossendorf
Anja Weigl
Tel. 0351-260 2452 | a.weigl@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Paul Scherrer Institut
Dagmar Baroke
Verantwortliche für Kommunikation
Tel. +41 56310 2916
dagmar.baroke@psi.ch

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/presse/magnetwirbel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie