Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetresonanz am einzelnen Protein

06.03.2015

Mit einem besonders empfindlichen magnetischen Sensor lässt sich die Form und Bewegung von Biomolekülen beobachten

Kernspin-Untersuchungen erleichtern Ärzten und Biologen enorm die Arbeit. Die Technik ist nicht nur das Mittel der Wahl für viele medizinische Diagnosen, sie offenbart auch immer mehr Details über die Chemie des Lebens. Ein deutsch-chinesisches Team, an dem auch Forscher des Max-Planck-Instituts für Festkörperforschung in Stuttgart beteiligt sind, präsentiert jetzt sogar eine Magnetresonanz-Studie an einem einzelnen Protein.


Brillanter Blick auf ein Protein: Ein NV-Zentrum, an dem in einem Diamanten ein Stickstoffatom sitzt, dient einem deutsch-chinesischen Team als besonders empfindlicher Sensor, um die Form und die Bewegung eines einzelnen Moleküls des Proteins MAD-2 zu untersuchen.

© University of Science and Technology of China, Hefei

Die Biophysiker setzen dabei auf die Prinzipien, die auch die Kernspin-Untersuchungen der Radiologie ermöglichen, sie nutzen allerdings einen viel empfindlicheren Sensor. So beobachten sie, wie sich das Protein bewegt, und zwar bei Raumtemperatur und in einem Milieu, das dem Zellinneren ähnelt. Damit zeigen die Wissenschaftler, dass es grundsätzlich möglich ist, einzelne Proteine und ihr Zusammenspiel in Zellen zu verfolgen, um Ursachen und Therapieansätze für Krankheiten zu finden.

Proteine sind die Werkzeuge des Lebens. Und wie ein Schraubenzieher in Gestalt eines Hammers keine Schraube dreht, erledigen sie ihre unzähligen Aufgaben im Körper nur, wenn sie die richtige Form oder Konformation besitzen. Manche Proteine müssen ihre Form wie eine auf- und zuklappende Zange auch ändern, um richtig zu funktionieren – Biologen sprechen dann von einer Konformationsänderung. Erledigen Proteine ihre Aufgaben nicht formvollendet, stottert die biochemische Maschinerie, und wir werden krank.

„Um die Funktion der Proteine zu verstehen und mögliche Krankheitsursachen zu erkennen, wollen wir Proteine möglichst in einer Zelle beobachten“, sagt Jörg Wrachtrup, Professor an der Universität Stuttgart und Fellow des Max-Planck-Instituts für Festkörperforschung. „Diesem Ziel sind wir jetzt einen großen Schritt näher gekommen.“ In einem Team, das Forscher der Universität im chinesischen Hefei leiteten, ist es ihm nun erstmals gelungen, mit der Magnetresonanz-Technik unter nahezu physiologischen Bedingungen zu verfolgen, wie sich ein einzelnes Exemplar des Proteins MAD-2 bewegt. MAD-2 trägt dazu bei, dass die Zellteilung reibungslos vonstatten geht.

Ein Fehler im Diamanten dient als besonders empfindlicher Sensor

Um zu prüfen, ob Proteine für solche Aufgaben in Form sind, hat Jörg Wrachtrup mit seinen Mitarbeitern einen Sensor mit der geeigneten Empfindlichkeit entwickelt. Kern dieses Sensors ist eine Fehlstelle in einem Diamanten, an der in dem Kohlenstoffgerüst des Edelsteins ein Stickstoffatom sitzt. Die Physiker nennen diesen Defekt NV-Zentrum, kurz für nitrogen vacancy center. An dieser Stelle sitzt ein Elektron, das anders als die anderen Elektronen im Diamantgitter keinen Partner hat. Sein Spin macht dieses Elektron zu einer Art winzigem Stabmagneten.

In welche Richtung sich der elektronische Stabmagnet am NV-Zentrum orientiert, lässt sich daran erkennen, wie stark der Stickstoff-Defekt in einem Lichtstrahl leuchtet. Die Orientierung des Stabmagneten hängt dabei von den magnetischen Einflüssen aus seiner unmittelbaren Umgebung ab. Die können etwa von den Kernspins der Wasserstoffatome in einem Protein herrühren, das die Forscher über dem NV-Zentrum platzieren.

Die Wirkung der Kernspins ist allerdings so schwach, dass die Forscher auf diese Weise nur einen winzigen Schnipsel des Proteins sehen könnten. Daher versehen sie das Protein mit einer Art magnetischen Verstärker: einem kleinen organischen Molekül, das ebenfalls einen einzelnen Elektronenspin und damit einen kleinen Stabmagneten trägt. Wie der Stabmagnet an dem Verstärkermolekül sein Pendant am NV-Zentrum beeinflusst, verrät den Forschern bis zu einer Entfernung von etwa zehn Nanometern nicht nur etwas über die Lage und Bewegung ihres Testproteins MAD-2. Das Verstärkermolekül übermittelt auch Informationen über die Kernspins des Proteins.

Mit Mikrowellenpulsen wird das magnetische Rauschen gefiltert

Um diese Information aus MAD-2 heraus zu kitzeln, muss das chinesisch-deutsche Team jedoch einen Trick anwenden. Denn die Forscher lösten das Protein in Polylysin, Ketten der Aminosäure Lysin, und simulierten auf diese Weise das Durcheinander an Proteinen in einer Zelle. Polylysin beeinflusst den Magnetsensor am NV-Zentrum jedoch ebenfalls stark. In diesem magnetischen Rauschen ginge der Einfluss von MAD-2 einfach unter. „Wir können den Spin-Sensor am NV-Zentrum aber so gut kontrollieren, dass wir das Rauschen des Polylysins herausfiltern“, sagt Jörg Wrachtrup. Mit einer Folge von Mikrowellenpulsen manipulieren die Wissenschaftler den Stabmagneten am NV-Zentrum. Der Sensor reagiert dann nur noch auf bestimmte magnetische Einflüsse, Störsignale bleiben so wirkungslos.

Ihre Technik wollen die Forscher nun auf Proteine in Zellen anwenden. „Einzelne Proteine lassen sich zwar schon mit der optischen Nanoskopie sichtbar machen“, sagt Jörg Wrachtrup. „Diese Methoden liefern jedoch keine Information über die Konformation und Dynamik eines Proteins.“ Der Diamantsensor soll da Abhilfe schaffen. Er soll Biochemikern künftig zeigen, ob Proteine bei ihren Aufgaben die richtige Form wahren.


Ansprechpartner

Prof. Dr. Jörg Wrachtrup
Fellow am Max-Planck-Institut für Festkörperforschung

Universität Stuttgart
Telefon: +49 711 685-65278

E-Mail: j.wrachtrup@fkf.mpg.de


Originalpublikation


Fazhan Shi, Qi Zhang, Pengfei Wang, Hongbin Sun, Jiarong Wang, Xing Rong, Ming Chen, Chenyong Ju, Friedemann Reinhard, Hongwei Chen, Jörg Wrachtrup, Junfeng Wang und Jiangfeng Du

Single-protein spin resonance spectroscopy under ambient conditions

Science, 6. März 2015; doi: 10.1126/science.aaa2253

Prof. Dr. Jörg Wrachtrup | Max-Planck-Institut für Festkörperforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise

Immunabwehr: Wie Proteine Membranbläschen zusammenbringen

28.06.2017 | Biowissenschaften Chemie

Das Auto lernt vorauszudenken

28.06.2017 | Maschinenbau