Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Magnetometer im Oberschnabel aller Vögel?

22.02.2010
Eisenhaltige kurze Nervenäste im Oberschnabel dienen offensichtlich ganz unterschiedlichen Vogelarten dazu, die Stärke des Erdmagnetfeldes zu messen und nicht nur seine Richtung wie ein Kompass zu bestimmen. Was die Frankfurter Neurobiologen Dr. Gerta Fleissner und ihr Mann Prof.Dr. Günther Fleissner bereits vor einigen Jahren bei Brieftauben entdeckten, können sie jetzt auch für andere Vogelarten belegen.

In Kooperation mit dem Experimentalphysiker Dr. Gerald Falkenberg vom DESY Hamburger Synchrotron haben sie die entscheidenden Eisenoxide charakterisiert, die die Funktion des Magnetometers im Schnabel steuern. Mit den Nachweismöglichkeiten der Röntgenfluoreszenz im DESY zeigt sich nun, dass auch die Eisenoxide in den Dendriten unterschiedlicher Vögel identisch sind; diese Ergebnisse veröffentlichen die drei Wissenschaftler soeben in dem renommierten interdisziplinären Online-Journal PloS ONE.

"Als wir in den zurückliegenden Jahren dieses System aus Nervenästen mit den stark magnetischen Eisenverbindungen in bestimmten Zellpartikeln bei Brieftauben nachgewiesen haben, warf dies sofort die Frage auf, ob es vergleichbare Dendritensysteme auch bei anderen Vogelarten gibt", so die Projektleiterin Gerta Fleissner. Egal, ob Vögel ihre Magnetkarte im Hirn, die von den mehr als 500 Magnetfeldrezeptoren kodiert wird, zur weiträumigen Orientierung nutzen oder nicht - die Anlagen sind sowohl bei Zugvögeln wie Rotkehlchen und Grasmücke als auch bei Haushühnern vorhanden. "Dieser Befund ist erstaunlich, weil die untersuchten Vögel eine sehr unterschiedliche Lebensweise haben und vielfältige Orientierungsaufgaben lösen müssen: Brieftauben, die geübt sind, von unterschiedlichen Auflassorten zum Heimatschlag zurück zu finden, Kurzstreckenzieher wie das Rotkehlchen, Langstreckenflieger wie die Grasmücke und ortstreue Vögel wie die Haushühner", erklärt Gerta Fleissner.

Um diesen Beweis anzutreten, haben die Wissenschaftler Tausende von Vergleichsuntersuchungen und -messungen vorgenommen: Zunächst wird dazu das Gewebe des Oberschnabels mikroskopiert und untersucht, wo sich in dem Gewebe eisenhaltige Substanzen befinden, anschließend vergleichen die Forscher diesen histologischen Befund mit den Ergebnissen der physikochemischen Analysen. Für diese aufwändigen Studien mit hochauflösenden topografischen Röntgenstrahlen wurde das Synchrotronlabor (Hasylab) am DESY in Hamburg eingesetzt. "Der Schnabel kann hier mit speziellen Röntgenstrahlen zerstörungsfrei untersucht werden, um genau herauszufinden, wo die stark magnetischen Eisenverbindungen in den Dendriten sitzen und wie sie im Detail zusammengesetzt sind", erläutert Gerta Fleissner und betont, dass sie ohne die DESY-Kooperation mit dem Experimentalphysiker und strahlenphysikalischen Projektleiter Falkenberg diesen Durchbruch nicht hätten erreichen können.

Das von den Eisenverbindungen lokal verstärkte Magnetfeld regt die Dendriten der Nervenzellen an, wobei jeder dieser vermutlich mehr als 500 Dendriten jeweils nur eine Richtung des Magnetfelds kodiert. Diese Informationen werden an das zentrale Nervensystem im Kopf des Vogels weitergeleitet und bilden die Basis für die Magnetkarte, die letztendlich die Orientierung im Raum ermöglicht. Ob die Möglichkeiten dieser Magnetkarte nun ausgeschöpft werden, hängt von der Motivation der jeweiligen Vogelart ab, die z.B. bei den Zugvögeln zur Zeit der Zugunruhe deutlich stärker ausgeprägt ist als zu anderen Jahreszeiten, wie von der Frankfurter Arbeitsgruppe um Prof. Wolfgang Wiltschko, dem Entdecker der Magnetwahrnehmung bei Vögeln, in vielfältigen Verhaltensversuchen gezeigt werden konnte. Die Zusammenarbeit mit diesem Forscherteam hat auch deutlich machen können, dass der Magnetkompass und die Magnetkarte vermutlich auf unterschiedlichen Mechanismen beruhen und an anderer Stelle lokalisiert sind: Der Magnetkompass liegt im Auge und das Magnetometer für die Magnetkarte im Schnabel.

"Die nun vorliegenden Befunde können auch die alten Mythen über eisenbasierte Mechanismen und Strukturen zur Magnetrezeption an beliebigen Stellen im Körper wie Blut, Gehirn oder Schädel widerlegen und stattdessen ein solides Methodenkonzept liefern, mit dessen Hilfe auch in anderen Organismen Magnetrezeptorsysteme aufgefunden werden können", freut sich Günther Fleissner. Ihre eindeutig reproduzierbaren Daten liefern die Basis für künftige Versuchsreihen, die die vielen bislang noch unbekannten Schritte zwischen der Magnetfeldwahrnehmung und deren Einsatz als Navigationshilfe aufklären sollen.

Die Untersuchungen, die jetzt veröffentlicht sind, wurden gefördert durch zwei Frankfurter Stiftungen, die Stiftung Polytechnische Gesellschaft und die Alfons und Gertrud Kassel-Stiftung, sowie durch das ZEN-Programm der Hertie-Stiftung, durch die Freunde und Förderer der Goethe-Universität und die Deutsche Forschungsgemeinschaft. Die aufwändigen Messungen im HASYLAB ermöglichte die Helmholtz-Gemeinschaft.

Informationen: Dr. Gerta Fleissner, Fachbereich Biowissenschaften, Goethe Universität Frankfurt,, mobil 0170-2083495, fleissner@bio.uni-frankfurt.de; Dr. Gerald Falkenberg, Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron (DESY), Telefon 040- 89982933, gerald.falkenberg@mail.desy.de

Quelle: Falkenberg G, Fleissner Ge, Schuchardt K, Kuehbacher M, Thalau P, et al. (2010) Avian Magnetoreception: Elaborate Iron Mineral Containing Dendrites in the Upper Beak Seem to Be a Common Feature of Birds. PLoS ONE 5(2): e9231. doi:10.1371/journal.pone.0009231 (plosone@plos.org)

Ulrike Jaspers | idw
Weitere Informationen:
http://www.plos.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie