Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisieren braucht mehr Zeit als Entmagnetisieren

01.03.2012
Forscher am Paul Scherrer Institut finden heraus, wie lange der Aufbau von Magnetismus in einem Metall dauert und wie der Vorgang abläuft

Wenn die Metalllegierung Eisen-Rhodium magnetisiert wird, dauert dieser Prozess deutlich länger als der gegenläufige Vorgang der Entmagnetisierung. Diese Erkenntnis haben Forscher des Paul Scherrer Instituts PSI in Villigen (AG/Schweiz) zusammen mit einem internationalen Forscherteam gewonnen.

Der Aufbau des Magnetismus erfolgt in zwei Schritten: Zunächst bilden sich kleine magnetische Regionen, jedoch zeigt das Magnetfeld in zufällige Richtung. Dann erst drehen sich diese Bereiche in eine gemeinsame Richtung.

Die entsprechende Studie ist dieser Tage in der renommierten Fachzeitschrift „Physical Review Letters“ erschienen. Die Erkenntnisse aus der Grundlagenforschung sind relevant für die Computerindustrie: Sie zeigen, welche Prozesse die Eigenschaften magnetischer Datenspeicherung begrenzen und wo es Potential für Verbesserung gibt.

Magnetismus ist eines der Phänomene, bei denen der Mensch Naturkräfte unmittelbar erfährt. Kinder kuppeln die Waggons der Brio-Eisenbahn durch Magnete, Erwachsene pinnen Notizen mit Magneten an den Kühlschrank, und in Elektroautos setzen Magnete Strom in Bewegung um. Physiker sind von der Kraft der Magnete seit deren Entdeckung in der Antike fasziniert und wollen sie verstehen. Vor rund 20 Jahren haben sie herausgefunden, wie lange es dauert, ein Material vom magnetischen in den nichtmagnetischen Zustand zu überführen. Forscher des PSI haben nun zusammen mit Kollegen aus Deutschland und den USA den gegenteiligen Prozess untersucht, also das „Anschalten“ des Magnetismus. Sie konnten dabei zeigen, dass es etwa 0,3 Milliardstelsekunden dauert, bis die Metalllegierung Eisen-Rhodium magnetisiert ist. Für die Forscher ist das eine vergleichsweise lange Zeit. Denn das „Anschalten“ von Magnetismus dauert 300 Mal länger als das „Ausschalten“, wie sie mit ihren Experimenten nachweisen können. „Es ist wie beim Hausbau: Es nimmt mehr Zeit in Anspruch, ein Haus zu bauen als es abzureissen“, sagt PSI-Forscher Dr. Christoph Quitmann, der das Experiment vor fünf Jahren angeregt hat und seither leitet.

Magnetisierung in zwei Schritten

Die Forscher hat nicht nur interessiert, wie schnell Eisen-Rhodium vom nichtmagnetischen in den magnetischen Zustand übergeht, sondern auch, wie sich dabei der Magnetismus im Material aufbaut. Jedes Eisenatom hat einen sogenannten Spin, es benimmt sich wie eine winzige Kompassnadel. Ein Material ist magnetisch, wenn all diese Spins in die gleiche Richtung zeigen. Dann summiert sich ihre magnetische Kraft und wird messbar. Das „Anschalten“ des Magnetismus ist mithin der Vorgang, die Spins (oder atomaren Kompassnadeln), die im unmagnetisierten Zustand unterschiedliche Orientierungen haben, in dieselbe Richtung zu bringen. Die PSI-Forscher konnten zeigen, dass der Magnetisierungsvorgang nicht gleichmässig abläuft, etwa von einer Seite der Materialprobe zur anderen oder vom Zentrum zum Rand, sondern in zwei Phasen. Der Magnetismus entsteht gleichzeitig, aber unabhängig in vielen kleinen Regionen des Materials, den sogenannten Domänen (Phase 1). Später (Phase 2) drehen sich die Domänen in eine gemeinsame Richtung. In Phase 1 – der sogenannten Nukleation – zeigen die Spins jeder Domäne in eine zufällige Richtung, der Magnetismus von zwei unterschiedlich ausgerichteten Domänen kann sich deshalb aufheben. In Phase 2 – der sogenannten Reorientierung – werden die Spins der Domänen in eine einzige gemeinsame Richtung gedreht. So wird die magnetische Kraft nach aussen wirksam. Die Nukleation läuft vergleichsweise rasch ab, die nachfolgende Reorientierung nimmt länger in Anspruch und bestimmt damit die Gesamtdauer des Magnetisierungsvorgangs.

Beobachtung mit Röntgen- und Laserstrahlen

Für ihre Untersuchungen nutzten die Forscher am PSI die Synchrotron Lichtquelle Schweiz SLS. Die SLS ist im Prinzip ein sehr leistungsstarkes Mikroskop, das Materialuntersuchungen in kleinsten Dimensionen erlaubt. Zur Untersuchung des Magnetismus beleuchten die Forscher die Materialprobe mit einem kurzen Puls eines Röntgenstrahls. Dieser wird beim Auftreffen auf die Atome abgelenkt („gebeugt“). Aus dem Grad der Ablenkung errechnen die Forscher den Abstand der Atome. Jetzt wird die Materialprobe durch einen Laserpuls erhitzt und dadurch magnetisch. (Eisen-Rhodium wird bei 120°C magnetisch). Nach einer kurzen Zeitverzögerung misst ein weiterer Röntgenpuls wiederum den Abstand der Atome. Dieser ist im magnetischen Zustand grösser. Mit dieser Versuchsanordnung können die Forscher beobachten, wie schnell sich der Abstand zwischen den Atomen vergrössert – und damit unmittelbar nachvollziehen, wieviel Zeit der Aufbau des Magnetismus in Anspruch nimmt.

International vernetzt

Zu den Erkenntnissen rund um das „Anschalten“ von Magnetismus haben die drei PSI-Forscher Christoph Quitmann, Simon Mariager und Gerhard Ingold beigetragen, dazu weitere Forscher aus Deutschland und den USA. Christian Back und sein Team von der Universität Regensburg stellten mit Messungen auf der Grundlage des elektrooptischen Kerr-Effekts fest, wie lange es braucht, bis über die ganze Probe hinweg der gleiche Magnetismus herrscht. Eric Fullerton und seine Kollegen vom der University of California in San Diego haben die Eisen-Rhodium-Proben hergestellt. Die Probe für die Experimente besteht aus einer nur gerade 500 Atome dicken Schicht aus Eisen und Rhodium. Damit die Atome der beiden Metalle regelmässig nebeneinander zu liegen kamen, wurden sie schichtenweise auf einen kristallinen Träger aufgedampft.

Leistungsfähige Datenspeicher

Die Forschungspartnerschaft mit Kalifornien zeigt die Richtung an, in der die Grundlagenforschung des PSI in Zukunft industriell nutzbar werden könnte. Die University of California in San Diego entwickelt nämlich mit Industriepartnern neue Computer-Festplatten. Wo immer Computerdaten heute langzeitgespeichert werden, geschieht dies magnetisch. Um die Speicherkapazität auszureizen, sind Materialien gefragt, bei denen die Magnetisierung möglichst schnell vonstatten geht. Eisen-Rhodium, mit dem die PSI-Forscher bisher arbeiten, ist in Diskussion für die nächste Generation von Computer-Festplatten. „Wir untersuchen, welches die physikalisch beschränkenden Prozesse sind, wenn es um die weitere Miniaturisierung von Datenspeichern oder die Erhöhung von deren Geschwindigkeit geht“, sagt PSI-Forscher Quitmann. Er und seine Kollegen werden in Zukunft weitere Materialien auf ihre Magnetisierungseigenschaften hin untersuchen. Für die Forschungsarbeit werden sie ab 2016 neben der SLS auch den Röntgenlaser SwissFEL benutzen, die neue, noch leistungsfähigere Grossforschungsanlage am PSI, die zurzeit in Bau ist.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt / Ansprechpartner
Dr. Christoph Quitmann
Labor für Kondensierte Materie, Forschungsbereich Synchrotronstrahlung und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Tel: +41 56 310 4560; E-Mail: christoph.quitmann@psi.ch

Originalveröffentlichung
Structural and Magnetic Dynamics of a Laser Induced Phase Transition in FeRh
S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Möhr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, E. E. Fullerton, R. Feidenhans’l, C. H. Back, and C. Quitmann;

Phys. Rev. Lett. 108, 087201 (2012), DOI: 10.1103/PhysRevLett.108.087201 http://dx.doi.org/10.1103/PhysRevLett.108.087201

Dagmar Baroke | idw
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.108.087201
http://psi.ch/E8d2

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie