Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisches Moment des Protons mit unvergleichlich hoher Genauigkeit gemessen

30.05.2014

Physikern gelingt erste hochpräzise direkte Messung einer fundamentalen Eigenschaft des Protons – Ergebnisse liefern Beitrag zum Verständnis der Materie-Antimaterie-Asymmetrie

Eines der großen Rätsel in der Physik ist das Ungleichgewicht zwischen Materie und Antimaterie in unserem Universum. Bislang ist unklar, weshalb sich nach dem Urknall Materie und Antimaterie nicht vollständig gegenseitig vernichtet haben, sondern ein Überschuss an Materie und damit die uns bekannte Welt entstanden ist. Physikalische Experimente an der Johannes Gutenberg-Universität Mainz (JGU) haben nun eine Lösung dieses Problems nähergebracht.


Doppelpenningfalle, in der das magnetische Moment des Protons gemessen wurde. Die Doppelpenningfalle besteht aus vergoldeten zylindrischen Fallenelektroden; die einzelnen Fallenelektroden werden durch Saphirringe voneinander isoliert. Während der Messung befindet sich die Falle im Ultra-hoch-Vakuum. Rechts im Bild ist das äußere Gehäuse eines Nachweisinstruments zur Beobachtung einzelner Protonen zu sehen. Die gesamte Konstruktion ist circa 20 cm lang.

Foto: Andreas Mooser, JGU


Das schwingende Proton (rot) erzeugt einen winzigen Strom, den eine hochempfindliche Elektronik erfasst. Das magnetische Moment des Protons ist als roter Pfeil eingezeichnet, die grünen Linien zeichnen das Magnetfeld in der Falle nach.

Abb.: Georg Schneider, JGU

Dabei ist es zum ersten Mal gelungen, das magnetische Moment des Protons direkt mit höchster Präzision zu messen. Das magnetische Moment ist eine fundamentale Eigenschaft von Protonen, jenen Teilchen, die zusammen mit Neutronen den Atomkern bilden. Die verwendete Methode eignet sich grundsätzlich auch dafür, das magnetische Moment des Antiprotons mit vergleichbar hoher Genauigkeit zu messen, sodass die Materie-Antimaterie-Asymmetrie getestet werden kann. Versuche dazu werden derzeit am Genfer Forschungszentrum CERN aufgebaut.

Jahrelange Vorarbeiten haben den Weg für die hochpräzisen Messungen geebnet, die alle vergleichbaren Versuche in den Schatten stellen. Daran beteiligt waren außer der JGU auch die GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt, das Max-Planck-Institut für Kernphysik Heidelberg und die japanische Forschungseinrichtung RIKEN. 

9 ermittelt werden. mal genauer als Messungen aus dem Jahr 2012, die unabhängig voneinander an der JGU und der Harvard University durchgeführt wurden, und dreimal genauer als eine indirekte Ermittlung aus dem Jahr 1972.

„Das Proton ist mit einem winzigen Stabmagneten zu vergleichen. Sein magnetisches Moment ist um 24 Größenordnungen, das ist ein Millionstel eines Milliardstels eines Milliardstels, schwächer als das einer typischen Kompassnadel. Uns ist nun die erste direkte Messung dieser Größe gelungen“, sagt Andreas Mooser, Erstautor der Studie aus der Arbeitsgruppe von Univ.-Prof. Dr. Jochen Walz, zu dem Experiment.

Der Schlüssel für die hochpräzisen Messungen liegt in der Verwendung einer doppelten Penningfalle, einer elektromagnetischen Teilchenfalle, in der ein einzelnes freies Proton gefangen und vermessen wird: Eine Analysefalle dient dazu, Spin-Quantensprünge des Protons zu detektieren, in einer Präzisionsfalle werden präzise Frequenzmessungen durchgeführt.

In der Vergangenheit wurden direkte Messungen des magnetischen Moments einzelner Teilchen mithilfe von Penningfallen sehr erfolgreich bei Elektronen und ihren Antiteilchen, den Positronen, durchgeführt. Die Anwendung des Schemas auf das Proton stellt jedoch eine große Herausforderung dar, weil das magnetische Moment des Protons etwa 660-mal kleiner ist als das des Elektrons. Die Apparatur muss für diesen Zweck also wesentlich empfindlicher sein. Der Kollaboration ist es nun gelungen, eine solche hochempfindliche Doppelpenningfalle zu entwickeln und die von langer Hand geplanten Messungen durchzuführen.

Anders als die direkten Messungen in Mainz beruhen die bisher genausten Angaben aus dem Jahr 1972 auf einer indirekten Methode, bei der die Hyperfeinstruktur von atomarem Wasserstoff vermessen wurde und anschließend Korrekturrechnungen erfolgten.

Das Prinzip der direkten Messung mittels Doppelpenningfalle kann ebenso auf das Antiproton angewendet werden. „Wir haben dann die Möglichkeit, die beiden Zahlen zu vergleichen und die fundamentalen Voraussagen des Standardmodells zu testen“, erklärt Stefan Ulmer, Sprecher der BASE-Kollaboration, die derzeit am CERN in Genf ein entsprechendes Experiment aufbaut.

Die Anwendung der Doppelpenningfallen-Technik auf das Antiproton könnte die Genauigkeit von Messungen, die ein Teil der ATRAP-Kollaboration im Jahr 2013 durchgeführt hat, um mindestens den Faktor 1000 verbessern. Würden sich die Messwerte unterscheiden, wäre dies ein wichtiger Schritt zum Verständnis der im Universum beobachteten Materie-Antimaterie-Asymmetrie.

Veröffentlichung:
Andreas Mooser et al.
Direct high-precision measurement of the magnetic moment of the proton
Nature, 29. Mai 2014
DOI: 10.1038/nature13388

Andreas Mooser et al.
Resolution of Single Spin Flips of a Single Proton
Physical Review Letters, 4. April 2013
DOI: 10.1103/PhysRevLett.110.140405

Weitere Informationen:
Dr. Andreas Mooser
Quanten-, Atom- und Neutronenphysik (Quantum)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25953
Fax +49 6131 39-23438
E-Mail: mooser@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/members__ag_walz__mooser.html.de

Weitere Informationen:

http://www.quantum.physik.uni-mainz.de/ag_walz__index.html.de ;
http://www.nature.com/nature/journal/v509/n7502/full/nature13388.html - Abstract ;
http://www.uni-mainz.de/presse/46320.php - Pressemitteilung „Quantensprung: Erstmals magnetische Eigenschaft an einem einzelnen Proton direkt beobachtet“ ;
http://base.web.cern.ch/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise