Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisches Moment des Protons mit unvergleichlich hoher Genauigkeit gemessen

30.05.2014

Physikern gelingt erste hochpräzise direkte Messung einer fundamentalen Eigenschaft des Protons – Ergebnisse liefern Beitrag zum Verständnis der Materie-Antimaterie-Asymmetrie

Eines der großen Rätsel in der Physik ist das Ungleichgewicht zwischen Materie und Antimaterie in unserem Universum. Bislang ist unklar, weshalb sich nach dem Urknall Materie und Antimaterie nicht vollständig gegenseitig vernichtet haben, sondern ein Überschuss an Materie und damit die uns bekannte Welt entstanden ist. Physikalische Experimente an der Johannes Gutenberg-Universität Mainz (JGU) haben nun eine Lösung dieses Problems nähergebracht.


Doppelpenningfalle, in der das magnetische Moment des Protons gemessen wurde. Die Doppelpenningfalle besteht aus vergoldeten zylindrischen Fallenelektroden; die einzelnen Fallenelektroden werden durch Saphirringe voneinander isoliert. Während der Messung befindet sich die Falle im Ultra-hoch-Vakuum. Rechts im Bild ist das äußere Gehäuse eines Nachweisinstruments zur Beobachtung einzelner Protonen zu sehen. Die gesamte Konstruktion ist circa 20 cm lang.

Foto: Andreas Mooser, JGU


Das schwingende Proton (rot) erzeugt einen winzigen Strom, den eine hochempfindliche Elektronik erfasst. Das magnetische Moment des Protons ist als roter Pfeil eingezeichnet, die grünen Linien zeichnen das Magnetfeld in der Falle nach.

Abb.: Georg Schneider, JGU

Dabei ist es zum ersten Mal gelungen, das magnetische Moment des Protons direkt mit höchster Präzision zu messen. Das magnetische Moment ist eine fundamentale Eigenschaft von Protonen, jenen Teilchen, die zusammen mit Neutronen den Atomkern bilden. Die verwendete Methode eignet sich grundsätzlich auch dafür, das magnetische Moment des Antiprotons mit vergleichbar hoher Genauigkeit zu messen, sodass die Materie-Antimaterie-Asymmetrie getestet werden kann. Versuche dazu werden derzeit am Genfer Forschungszentrum CERN aufgebaut.

Jahrelange Vorarbeiten haben den Weg für die hochpräzisen Messungen geebnet, die alle vergleichbaren Versuche in den Schatten stellen. Daran beteiligt waren außer der JGU auch die GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt, das Max-Planck-Institut für Kernphysik Heidelberg und die japanische Forschungseinrichtung RIKEN. 

9 ermittelt werden. mal genauer als Messungen aus dem Jahr 2012, die unabhängig voneinander an der JGU und der Harvard University durchgeführt wurden, und dreimal genauer als eine indirekte Ermittlung aus dem Jahr 1972.

„Das Proton ist mit einem winzigen Stabmagneten zu vergleichen. Sein magnetisches Moment ist um 24 Größenordnungen, das ist ein Millionstel eines Milliardstels eines Milliardstels, schwächer als das einer typischen Kompassnadel. Uns ist nun die erste direkte Messung dieser Größe gelungen“, sagt Andreas Mooser, Erstautor der Studie aus der Arbeitsgruppe von Univ.-Prof. Dr. Jochen Walz, zu dem Experiment.

Der Schlüssel für die hochpräzisen Messungen liegt in der Verwendung einer doppelten Penningfalle, einer elektromagnetischen Teilchenfalle, in der ein einzelnes freies Proton gefangen und vermessen wird: Eine Analysefalle dient dazu, Spin-Quantensprünge des Protons zu detektieren, in einer Präzisionsfalle werden präzise Frequenzmessungen durchgeführt.

In der Vergangenheit wurden direkte Messungen des magnetischen Moments einzelner Teilchen mithilfe von Penningfallen sehr erfolgreich bei Elektronen und ihren Antiteilchen, den Positronen, durchgeführt. Die Anwendung des Schemas auf das Proton stellt jedoch eine große Herausforderung dar, weil das magnetische Moment des Protons etwa 660-mal kleiner ist als das des Elektrons. Die Apparatur muss für diesen Zweck also wesentlich empfindlicher sein. Der Kollaboration ist es nun gelungen, eine solche hochempfindliche Doppelpenningfalle zu entwickeln und die von langer Hand geplanten Messungen durchzuführen.

Anders als die direkten Messungen in Mainz beruhen die bisher genausten Angaben aus dem Jahr 1972 auf einer indirekten Methode, bei der die Hyperfeinstruktur von atomarem Wasserstoff vermessen wurde und anschließend Korrekturrechnungen erfolgten.

Das Prinzip der direkten Messung mittels Doppelpenningfalle kann ebenso auf das Antiproton angewendet werden. „Wir haben dann die Möglichkeit, die beiden Zahlen zu vergleichen und die fundamentalen Voraussagen des Standardmodells zu testen“, erklärt Stefan Ulmer, Sprecher der BASE-Kollaboration, die derzeit am CERN in Genf ein entsprechendes Experiment aufbaut.

Die Anwendung der Doppelpenningfallen-Technik auf das Antiproton könnte die Genauigkeit von Messungen, die ein Teil der ATRAP-Kollaboration im Jahr 2013 durchgeführt hat, um mindestens den Faktor 1000 verbessern. Würden sich die Messwerte unterscheiden, wäre dies ein wichtiger Schritt zum Verständnis der im Universum beobachteten Materie-Antimaterie-Asymmetrie.

Veröffentlichung:
Andreas Mooser et al.
Direct high-precision measurement of the magnetic moment of the proton
Nature, 29. Mai 2014
DOI: 10.1038/nature13388

Andreas Mooser et al.
Resolution of Single Spin Flips of a Single Proton
Physical Review Letters, 4. April 2013
DOI: 10.1103/PhysRevLett.110.140405

Weitere Informationen:
Dr. Andreas Mooser
Quanten-, Atom- und Neutronenphysik (Quantum)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25953
Fax +49 6131 39-23438
E-Mail: mooser@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/members__ag_walz__mooser.html.de

Weitere Informationen:

http://www.quantum.physik.uni-mainz.de/ag_walz__index.html.de ;
http://www.nature.com/nature/journal/v509/n7502/full/nature13388.html - Abstract ;
http://www.uni-mainz.de/presse/46320.php - Pressemitteilung „Quantensprung: Erstmals magnetische Eigenschaft an einem einzelnen Proton direkt beobachtet“ ;
http://base.web.cern.ch/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie