Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Nanoschalter für Thermospannungen

24.10.2011
Ein neu entdeckter Effekt in magnetischen Tunnelstrukturen erlaubt die Kontrolle von Thermospannungen in nanoelektronischen Schaltungen

Die Wärme, die in winzigen Computerprozessoren entsteht, ist vielleicht bald nicht mehr nutzlos oder gar problematisch. Im Gegenteil, sie könnte dazu genutzt werden, um eben diese Prozessoren leichter zu schalten oder um Daten effizienter zu speichern.


Eine magnetische Tunnelstruktur besteht aus zwei magnetischen Schichten (rot, blau), die durch eine nur etwa einen Nanometer dünne Isolationsschicht (grau), die sogenannte Tunnelbarriere, getrennt sind. Erzeugt man eine Temperaturdifferenz T über die Barriere, so fällt zwischen der heißen (rot) und einer kalten (blau) Schicht eine Thermospannung VTh ab. Ändert man nun die magnetische Ausrichtung z.B. der heißen Schicht gegenüber der der kalten (Pfeile), führt das zu einer starken Änderung der gemessenen Thermospannung.
(Abb.: Schumacher/PTB)

Das sind zwei der möglichen Anwendungen einer Entdeckung aus der Physikalisch-Technischen Bundesanstalt (PTB). Diese sogenannte Tunnel-Magneto-Thermospannung dürfte vor allem für den Einsatz von nanoelektronischen Schaltungen, also kleinen Bauteilen auf der Basis von magnetischen Tunnelstrukturen, sehr interessant sein. Die Ergebnisse der Forscher sind in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.

Magnetische Tunnelstrukturen kommen bereits heute in verschiedenen Bereichen der Informationstechnologie zur Anwendung. Zum Beispiel dienen sie als magnetische Speicherzellen in nichtflüchtigen magnetischen Speicherchips (sogenannten MRAMs, magnetic random access memories) oder als hochempfindliche magnetische Sensoren zum Auslesen der auf Festplatten gespeicherten Daten. Der in der PTB im Rahmen einer Forschungskollaboration mit der Uni Bielefeld und der Firma Singulus entdeckte neue Effekt könnte diesen bestehenden Anwendungen zukünftig eine weitere hinzufügen: die Kontrolle und Steuerung von thermischen Spannungen und Strömen in hochintegrierten elektronischen Schaltkreisen.

Magnetische Tunnelstrukturen bestehen aus zwei magnetischen Schichten, die durch eine nur etwa einen Nanometer dünne Isolationsschicht, die sogenannte Tunnelbarriere, voneinander getrennt sind. Die magnetische Orientierung der beiden Schichten in der Tunnelstruktur hat einen großen Einfluss auf ihre elektrischen Eigenschaften: Sind die magnetischen Momente der beiden Schichten parallel ausgerichtet, ist der Widerstand niedrig, sind sie entgegengesetzt, ist er hoch. Die Widerstandsänderung beim Umschalten der Magnetisierung kann dabei deutlich über 100 % betragen. So lässt sich über das Schalten der Magnetisierung der elektrische Stromfluss durch die magnetische Tunnelstruktur effizient kontrollieren.

Die Arbeiten der PTB-Forscher zeigen nun, dass neben dem elektrischen Strom auch der thermische Strom durch die Tunnelstruktur über das Schalten der Magnetisierung beeinflusst werden kann. In ihren Experimenten erzeugten die Wissenschaftler einen Temperaturunterschied zwischen den beiden magnetischen Schichten und untersuchten die dadurch entstehende elektrische Spannung, die sogenannte Thermospannung. Dabei zeigte sich, dass die Thermospannung fast genauso stark von der magnetischen Orientierung der beiden Schichten abhängt wie der elektrische Widerstand. Durch das Schalten der Magnetisierung können also die Thermospannung und letztendlich auch der thermische Strom durch die Probe kontrolliert werden.

Zukünftige Anwendungen dieses neuen Effekts ergeben sich z.B. in der Nutzung und gezielten Energieumwandlung von Abwärme in integrierten Schaltkreisen. Zudem ist die Entdeckung dieser sogenannten Tunnel-Magneto-Thermospannung ein Meilenstein im sich rapide entwickelnden Forschungsgebiet „Spinkalorik“, das aktuell auch von der Deutschen Forschungsgemeinschaft in einem großangelegten Schwerpunktprogramm über sechs Jahre gefördert wird.

es/ptb

Ansprechpartner:
Dr. Hans Werner Schumacher, Fachbereich 2.5 Halbleiterphysik und Magnetismus,
Tel. (0531) 592-2500, E-Mail: hans.w.schumacher@ptb.de
Die wissenschaftliche Veröffentlichung:
Liebing, N.; Serrano-Guisan, S.; Rott, K.; Reiss, G.; Langer, J.; Ocker, B.; Schumacher, H.W.: Tunneling magneto power in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011)

http://prl.aps.org/abstract/PRL/v107/i17/e177201

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften