Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Nanoschalter für Thermospannungen

24.10.2011
Ein neu entdeckter Effekt in magnetischen Tunnelstrukturen erlaubt die Kontrolle von Thermospannungen in nanoelektronischen Schaltungen

Die Wärme, die in winzigen Computerprozessoren entsteht, ist vielleicht bald nicht mehr nutzlos oder gar problematisch. Im Gegenteil, sie könnte dazu genutzt werden, um eben diese Prozessoren leichter zu schalten oder um Daten effizienter zu speichern.


Eine magnetische Tunnelstruktur besteht aus zwei magnetischen Schichten (rot, blau), die durch eine nur etwa einen Nanometer dünne Isolationsschicht (grau), die sogenannte Tunnelbarriere, getrennt sind. Erzeugt man eine Temperaturdifferenz T über die Barriere, so fällt zwischen der heißen (rot) und einer kalten (blau) Schicht eine Thermospannung VTh ab. Ändert man nun die magnetische Ausrichtung z.B. der heißen Schicht gegenüber der der kalten (Pfeile), führt das zu einer starken Änderung der gemessenen Thermospannung.
(Abb.: Schumacher/PTB)

Das sind zwei der möglichen Anwendungen einer Entdeckung aus der Physikalisch-Technischen Bundesanstalt (PTB). Diese sogenannte Tunnel-Magneto-Thermospannung dürfte vor allem für den Einsatz von nanoelektronischen Schaltungen, also kleinen Bauteilen auf der Basis von magnetischen Tunnelstrukturen, sehr interessant sein. Die Ergebnisse der Forscher sind in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.

Magnetische Tunnelstrukturen kommen bereits heute in verschiedenen Bereichen der Informationstechnologie zur Anwendung. Zum Beispiel dienen sie als magnetische Speicherzellen in nichtflüchtigen magnetischen Speicherchips (sogenannten MRAMs, magnetic random access memories) oder als hochempfindliche magnetische Sensoren zum Auslesen der auf Festplatten gespeicherten Daten. Der in der PTB im Rahmen einer Forschungskollaboration mit der Uni Bielefeld und der Firma Singulus entdeckte neue Effekt könnte diesen bestehenden Anwendungen zukünftig eine weitere hinzufügen: die Kontrolle und Steuerung von thermischen Spannungen und Strömen in hochintegrierten elektronischen Schaltkreisen.

Magnetische Tunnelstrukturen bestehen aus zwei magnetischen Schichten, die durch eine nur etwa einen Nanometer dünne Isolationsschicht, die sogenannte Tunnelbarriere, voneinander getrennt sind. Die magnetische Orientierung der beiden Schichten in der Tunnelstruktur hat einen großen Einfluss auf ihre elektrischen Eigenschaften: Sind die magnetischen Momente der beiden Schichten parallel ausgerichtet, ist der Widerstand niedrig, sind sie entgegengesetzt, ist er hoch. Die Widerstandsänderung beim Umschalten der Magnetisierung kann dabei deutlich über 100 % betragen. So lässt sich über das Schalten der Magnetisierung der elektrische Stromfluss durch die magnetische Tunnelstruktur effizient kontrollieren.

Die Arbeiten der PTB-Forscher zeigen nun, dass neben dem elektrischen Strom auch der thermische Strom durch die Tunnelstruktur über das Schalten der Magnetisierung beeinflusst werden kann. In ihren Experimenten erzeugten die Wissenschaftler einen Temperaturunterschied zwischen den beiden magnetischen Schichten und untersuchten die dadurch entstehende elektrische Spannung, die sogenannte Thermospannung. Dabei zeigte sich, dass die Thermospannung fast genauso stark von der magnetischen Orientierung der beiden Schichten abhängt wie der elektrische Widerstand. Durch das Schalten der Magnetisierung können also die Thermospannung und letztendlich auch der thermische Strom durch die Probe kontrolliert werden.

Zukünftige Anwendungen dieses neuen Effekts ergeben sich z.B. in der Nutzung und gezielten Energieumwandlung von Abwärme in integrierten Schaltkreisen. Zudem ist die Entdeckung dieser sogenannten Tunnel-Magneto-Thermospannung ein Meilenstein im sich rapide entwickelnden Forschungsgebiet „Spinkalorik“, das aktuell auch von der Deutschen Forschungsgemeinschaft in einem großangelegten Schwerpunktprogramm über sechs Jahre gefördert wird.

es/ptb

Ansprechpartner:
Dr. Hans Werner Schumacher, Fachbereich 2.5 Halbleiterphysik und Magnetismus,
Tel. (0531) 592-2500, E-Mail: hans.w.schumacher@ptb.de
Die wissenschaftliche Veröffentlichung:
Liebing, N.; Serrano-Guisan, S.; Rott, K.; Reiss, G.; Langer, J.; Ocker, B.; Schumacher, H.W.: Tunneling magneto power in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011)

http://prl.aps.org/abstract/PRL/v107/i17/e177201

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops