Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Wirbel maßgeschneidert

04.06.2014

Kieler Forscher erklären Auftreten von Skyrmionen in atomar dünnen Metallfilmen

Im letzten Jahr haben deutsche Physikerinnen und Physiker in einer international viel beachteten Arbeit erstmals demonstriert, dass sich einzelne magnetische Skyrmionen – stabile, wirbelförmige Strukturen aus atomaren Spins – kontrolliert erzeugen und löschen lassen.


Winzige magnetische Wirbel mit einem Durchmesser von nur wenigen Nanometern treten in einem atomar dünnen Eisenfilm auf. Die Grafik zeigt den „atomaren Stabmagneten“ eines jeden Eisenatoms, dargestellt durch einen kleinen farbigen Pfeil (rechts). Ein homogener, ferromagnetischer Hintergrund ist durch die roten, nach oben zeigenden Pfeile zu erkennen. In den magnetischen Wirbeln – den Skyrmionen – drehen die „atomaren Stabmagnete“ der Eisenatome (orangene und grüne Pfeile) und weisen in ihrem Zentrum eine entgegengesetzte Ausrichtung auf (blaue Pfeile). Links ist die sogenannte Skyrmionendichte als farbiges Bild zu sehen. Der ferromagnetische Hintergrund hat eine verschwindende Skyrmionendichte (blau), während die Skyrmionen als kleine „Hügel“ sichtbar werden. Copyright: B. Dupé, Universität Kiel

Diese Spinstrukturen haben wegen ihres Durchmessers von nur wenigen Nanometern und der leichten Manipulierbarkeit mit elektrischen Strömen ein großes Potenzial für Anwendungen in der Spinelektronik. Warum derartige Spinstrukturen in solchen ultradünnen Metallfilmen auftreten, war jedoch bislang vollkommen unverstanden. Dieses Problem haben theoretische Physiker der Christian-Albrechts-Universität zu Kiel (CAU) nun gelöst.

In ihrer Arbeit, die heute (Mittwoch, 4. Juni) in dem renommierten Journal Nature Communications erschienen ist, zeigen die Forscher, wie sich durch die Struktur und chemische Zusammensetzung von Grenzflächen die Eigenschaften der Skyrmionen maßschneidern lassen.

Vor mehr als 20 Jahren haben theoretische Physiker das Auftreten von stabilen, wirbelförmigen Spinstrukturen in magnetischen Materialien vorhergesagt. Ein experimenteller Nachweis gelang jedoch erst vor wenigen Jahren in exotischen Materialien mit einer speziellen Kristallstruktur.

Kürzlich wurden magnetische Skyrmionen auch in ultradünnen magnetischen Metallfilmen entdeckt, wodurch eine ganz neue Materialklasse entdeckt wurde, die für Anwendungen in der Spinelektronik besonders geeignet ist. Experimentell gelang es einer deutschen Forschungsgruppe im letzten Jahr sogar, einzelne magnetische Skyrmionen zu schreiben und zu löschen – eine grundlegende Voraussetzung für neuartige Datenspeicher.

Warum in den untersuchten Metallfilmen isolierte Skyrmionen auftreten, war jedoch bislang vollkommen unklar. Dieses Problem haben theoretische Physiker der Universität Kiel nun gelöst. „Für uns war eine Schlüsselfrage, wie die magnetischen Wechselwirkungen in den ultradünnen Filmen kontrolliert werden können“, sagt Professor Stefan Heinze, Leiter der Kieler Arbeitsgruppe.

Basierend auf quantenmechanischen Berechnungen, die auf Supercomputern am Hochleistungsrechenzentrum in Hannover (HLRN) vorgenommen wurden, konnten die Forscher zeigen, dass insbesondere die Austauschwechselwirkung, die die relative Ausrichtung der atomaren Stabmagnete kontrolliert, in den Metallfilmen entscheidend verändert werden kann. Die Wechselwirkung, die für den Drehsinn der magnetischen Strukturen verantwortlich ist, blieb dabei entgegen der Annahmen anderer Forschender in unterschiedlichen Filmsystemen nahezu gleich. Heinze: „Damit konnten wir nicht nur die früheren Experimente erklären, sondern auch Vorhersagen für neue Systeme machen.“

Die numerischen Simulationen zeigen die Ausbildung von magnetischen Wirbeln, die nur einen definierten Rotationssinn - rechtsdrehend - besitzen und je nach Filmstruktur und -zusammensetzung einen Durchmesser von zwei bis sechs Nanometern haben (siehe Abbildung). „Zur Simulation dieser Spinstrukturen mussten wir über die bisher verwendeten Verfahren hinausgehen, da die Wechselwirkungen in den Filmen wesentlich komplexer sind, als bisher angenommen wurde“, sagt Dr. Bertrand Dupé, Postdoktorand und Erstautor der Arbeit.

Auch die Stabilität der magnetischen Wirbel lässt sich durch die Struktur und chemische Zusammensetzung der Filme verändern, wodurch sich ein großes Potenzial für das Maßschneidern von Skyrmionen mit den gewünschten Eigenschaften ergibt. Für zukünftige Anwendungen in der Spinelektronik müssen die bisher gefundenen Systeme noch weiterentwickelt werden, da die magnetischen Skyrmionen in den untersuchten Metallfilmen nur bei sehr tiefen Temperaturen auftreten. Die Arbeiten der Kieler Forscher zeigen aber, wie der Weg dahin verlaufen könnte.

Hintergrundinformationen:
Der Spin der Elektronen, der mit einem magnetischen Moment verknüpft ist und in magnetischen Materialien zur Ausbildung „atomarer Stabmagnete“ (atomarer Spins) führt, eignet sich dazu, Informationen zu verarbeiten und zu kodieren. Durch seine gezielte Manipulation könnte man schnellere, energiesparsamere und leistungsfähigere Bauelemente für die Informationstechnologie schaffen = Spinelektronik.

Pressemeldung der Universität Hamburg zur experimentellen Demonstration des Schreibens und Löschens einzelner Skyrmionen vom 08.08.2013: www.nanoscience.de/sfb668/aktuelles/presse/2013-08-08.html


Originalveröffentlichung:
Tailoring magnetic skyrmions in ultra-thin transition-metal films, Bertrand Dupé, Markus Hoffmann, Charles Paillard und Stefan Heinze, Nature Communications, Online-Veröffentlichung vom 04.06.2014, DOI: 10.1038/ncomms5030.

Kontakt:
Professor Dr. Stefan Heinze
Telefon: 0431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de
Web: www.itap.uni-kiel.de/theo-physik/heinze

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
e-Mail: ► presse@uv.uni-kiel.de
Text / Redaktion: Claudia Eulitz/Stefan Heinze

Claudia Eulitz | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten