Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Version des Tscherenkov-Effekts entdeckt

06.01.2014
Jülicher Physiker simulieren vielversprechenden Effekt zur Erzeugung von Spinwellen

Die Computer der Zukunft sollen schneller rechnen und weniger Energie verbrauchen. Möglich wird dies, wenn anstelle der Ladung von Elektronen ihr magnetisches Moment – der Spin – zur Datenverarbeitung genutzt wird.


Die Abbildung zeigt Spinwellen in einer Permalloy-Schicht von 10 Nanometern Dicke. Sie entstehen durch die Bewegung eines punktförmigen Magnetfelds von 40 Millitesla Stärke, vergleichbar mit der Stärke eines handelsüblichen Hufeisenmagnets, mit einer Geschwindigkeit von 1180 Metern pro Sekunde oder 4248 Kilometern pro Stunde. Der Magnetfeldpuls und seine Bewegungsrichtung sind durch den gelben Würfel und Pfeil markiert. Die orangene Linie markiert die vordere, die rote Linie die hintere Wellenfront.

Quelle: Forschungszentrum Jülich

Elektronen müssen dann nicht mehr fließen, sondern lediglich die Spininformation weitergeben. Forscher aus Jülich, Straßburg und Shanghai haben nun einen für die Umsetzung dieses Konzepts vielversprechenden neuen physikalischen Effekt simuliert.

Dabei handelt es sich um eine magnetische Version des bekannten Tscherenkov-Effekts. Mit seiner Hilfe könnten sich Spinwellen mit definierten Frequenzen einfacher als bisher gedacht erzeugen lassen. Die Forschungsergebnisse sind in der internationalen Fachzeitschrift "Physical Review B" nachzulesen (DOI: 10.1103/PhysRevB.88.220412).

Die theoretischen Physiker vom Forschungszentrum Jülich, dem französischen Forschungszentrum CNRS in Straßburg sowie der chinesischen Universität Shanghai zeigten mit Hilfe von Computersimulationen, dass Spinwellen entstehen, wenn ein magnetischer Feldpuls schnell genug an einem magnetischen Material wie Permalloy entlang läuft.

"Schnell genug bedeutet, der Puls muss sich schneller bewegen, als sich die Spinwellen im Material ausbreiten können", erläutert Dr. Attila Kákay vom Jülicher Peter Grünberg Institut. "Zur Erzeugung des Pulses stehen eine Vielzahl von Möglichkeiten zur Verfügung", berichtet der Physiker, "unter anderem elektrischer Strom oder Laserpulse."

Die Forscher tauften das neue Phänomen "Spin-Tscherenkov -Effekt", in Anlehnung an den bekannten Tscherenkov-Effekt, der auftritt, wenn geladene Teilchen schneller durch Wasser gleiten als das Licht. Dann zeigt sich ein bläuliches Leuchten, die Tscherenkov-Strahlung. Sie entsteht, weil die geladenen Teilchen die Atome des Wassers längs ihrer Flugbahn zu elektrischen Schwingungen anregen und dadurch elektromagnetische Wellen erzeugen. Ähnlich wie bei einem Überschallflug entsteht dabei ein Überlichtkegel.

Beim Spin-Tscherenkov-Effekt entstehen ebenfalls kegelförmige Wellenfronten – allerdings sind sie magnetisch und besitzen eine andere Geometrie: eine Wellenfront läuft dem magnetischen Feldpuls voraus, eine weitere folgt ihm. Die Frequenz der Spinwellen lässt sich durch die Geschwindigkeit einstellen, mit der sich der magnetische Feldpuls bewegt, fanden die Forscher heraus. Dies ist essentiell für eine technische Nutzung.

Die Forscher glauben, dass es sich beim Tscherenkov-Effekt um ein universelles Phänomen handelt. Nach ihren Berechnungen lässt es sich in ganz unterschiedlich geformten Magneten erzeugen, sowohl in dünnen Streifen als auch in Dünnschichtsystemen, aber auch in Bulkmaterialien. Deshalb erwarten sie, dass experimentelle Belege für den Effekt bald erfolgen werden.

Originalveröffentlichung:

Spin-Cherenkov Effect and magnonic Mach cones;
Ming Yan, Attila Kákay, Christian Andreas, Riccardo Hertel;
Physical Review B, Volume 88, Issue 22, published online: 30 December 2013; DOI: 10.1103/PhysRevB.88.220412

Weitere Informationen:

Peter Grünberg Institut - Elektronische Eigenschaften (PGI-6)
http://www.fz-juelich.de/pgi/pgi-6/DE/Home/home_node.html;
jsessionid=415FCFDA39343E9BBDBD70F9E38D2E97
Ansprechpartner:
Dr. Attila Kákay,
Peter Grünberg Institut - Elektronische Eigenschaften (PGI-6):,
Forschungszentrum Jülich, Tel. 02461 61-6660, E-Mail: a.kakay@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik