Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen

Das Prinzip der Herstellung eines "Quanten-Eierkartons" mit einer von den ForscherInnen neu entwickelten maskierten Ionenstrahltechnologie. Das Bild zeigt eine elektronenmikroskopische Aufnahme Copyright: Wolfgang Lang, Universität Wien

Je schneller Daten in Computern verarbeitet werden, desto größer ist die Wärmeentwicklung, die die Leistungsfähigkeit schneller Computer begrenzt. ForscherInnen versuchen daher seit längerem, digitale Schaltkreise auf der Basis von Supraleitern zu entwickeln – jenen seltsamen Materialien, die Strom völlig verlustfrei transportieren können, wenn sie unter eine gewisse kritische Temperatur gekühlt werden.

Magnetische Quantenobjekte in Supraleitern

Innerhalb eines Supraleiters kann ein Magnetfeld nur in kleinsten quantisierten Portionen existieren, den Fluxonen. Diese eignen sich besonders für die Speicherung und Verarbeitung von Datenbits. In einem homogenen Supraleiter ordnen sich die Fluxonen in einem hexagonalen Gitter an. Mit moderner Nanotechnologie ist es ForscherInnen der Universität Wien und der Johannes-Kepler- Universität Linz nun gelungen, künstliche Fallen für Fluxonen zu bauen und diese damit in andere, vorgegebene Anordnungen zu zwingen.

Die Bedeutung des Nicht-Gleichgewichts

Bisher konnten die Fluxonen in derartigen Fallen nur im thermodynamischen Gleichgewicht beobachtet werden, also in einer gleichförmigen Anordnung. „Würden wir versuchen, zwei Eier in einem Eierkarton übereinander zu stapeln und dafür die benachbarte Vertiefung leer lassen, so würde das Ei schnell herunterrollen und den Gleichgewichtszustand mit genau einem Ei in jeder Vertiefung herstellen“, erklärt Wolfgang Lang von der Universität Wien.

Vom Standpunkt der Datenverarbeitung enthält der vollbesetzte Eierkarton aber kaum Information und ist daher unbrauchbar. Viel nützlicher wäre es da, die einzelnen Plätze in einem vorgegebenen Muster mit Eiern zu besetzen. Damit ließe sich zum Beispiel der von Smartphones bekannte QR-Code im Eierkarton darstellen – ganz offensichtlich eine große Menge an Information.

Im Nanobereich ist den ForscherInnen nun ein wichtiger Schritt in diese Richtung gelungen, indem sie erstmals einen stabilen Nicht-Gleichgewichtszustand von Fluxonen in einem Gitter aus über 180.000 künstlichen Fallen demonstrieren konnten. Je nach von außen vorgegebenem Magnetfeld ordnen sich die Fluxonen in terrassenförmigen Zonen an, in denen jede Falle entweder kein Fluxon, genau eines, oder sogar mehrere Fluxonen einfängt.

„Auch nach einigen Tagen haben wir noch exakt die gleiche Anordnung von Fluxonen beobachtet – eine für ein Quantensystem überraschende Langzeitstabilität“, berichtet Georg Zechner von der Universität Wien als Erstautor der Studie.

Nanostrukturierung von Supraleitern mit Ionenstrahlen

Möglich wurden diese Forschungsergebnisse durch eine neuartige Methode, die von den Linzer und Wiener ForscherInnen gemeinsam mit dem Wiener High-Tech Unternehmen IMS Nanofabrication AG entwickelt wurde. „Maskierte Ionenbestrahlung erlaubt die Herstellung von Nanostrukturen in Supraleitern in einem einzigen Verfahrensschritt, ist zeitökonomisch auf große Flächen anwendbar und daher auch industriell skalierbar und benötigt keine chemischen Prozesse“, betont Johannes D. Pedarnig vom Institut für Angewandte Physik der Johannes-Kepler-Universität Linz.

Je nach verwendeter Maske lassen sich damit nahezu beliebige Strukturen in den Supraleiter schreiben. Die WissenschafterInnen planen nun weitergehende Experimente an komplizierteren Nanostrukturen, die den gezielten Transport von Fluxonen von einer zur nächsten Falle demonstrieren sollen. Dies könnte ein weiterer wegweisender Schritt für die Entwicklung von schnellen Computerschaltkreisen auf der Basis von Fluxonen sein.

Publikation in „Physical Review Applied“:
„Hysteretic vortex matching effects in high-Tc superconductors with nanoscale periodic pinning landscapes fabricated by He ion beam projection technique“:
G. Zechner, F. Jausner, L. T. Haag, W. Lang, M. Dosmailov, M. A. Bodea, J. D. Pedarnig
Phys. Rev. Applied 8, 014021, 21.Juli 2017
doi: 10.1103/PhysRevApplied.8.014021
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.014021

Wissenschaftlicher Kontakt
ao. Univ.-Prof. Dr. Wolfgang Lang
Electronic Properties of Materials
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
M +43-664-602 77-514 24
wolfgang.lang@univie.ac.at
http://epm.univie.ac.at/

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Media Contact

Alexandra Frey Universität Wien

Weitere Informationen:

http://www.univie.ac.at/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer