Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Monopole auf Wanderschaft

18.10.2010
Forschende machen Bewegung magnetischer Monopole in einer Anordnung von Nanomagneten sichtbar.

Seit Jahrzehnten suchen Forschende nach magnetischen Monopolen – einzelnen magnetischen Ladungen, die sich wie einzelne elektrische Ladungen alleine bewegen könnten.

Denn normalerweise treten magnetische Pole immer nur in Paaren auf. Nun ist es einem Team von Forschenden des Paul Scherrer Instituts und des University College Dublin gelungen, Monopole als Quasiteilchen in einer Anordnung von nanometergrossen Magneten zu erzeugen und ihre Bewegung unmittelbar mit Hilfe eines Mikroskops an der Synchrotron Lichtquelle Schweiz (SLS), das magnetische Strukturen sichtbar macht, zu beobachten.

Wie die elementaren Monopole, die zuerst vom britischen Physiker Paul Dirac 1931 vorhergesagt wurden, ist auch jeder dieser Monopole durch einen „String“, eine Art Verbindungsband, mit einem Partner entgegengesetzter Ladung verknüpft. Die beiden Monopole können sich dabei aber weitgehend unabhängig voneinander bewegen. Diese Ergebnisse sind nicht nur wissenschaftlich interessant, sondern könnten auch die Grundlage für die Entwicklung zukünftiger elektronischer Geräte bilden. Sie wurden am 17. Oktober in Nature Physics online publiziert.

Magnetische Pole treten immer nur paarweise auf – teilt man einen Stabmagneten, der immer einen Nord- und einen Südpol hat, so bekommt man nicht einzelne Pole, sondern wieder zwei Magnete mit je einem Nord- und einem Südpol. Das ist ähnlich wie bei einem Stab, bei dem man nicht zwei einzelne Enden bekommt, wenn man ihn halbiert, sondern zwei Stäbe mit je zwei Enden. Wie aber schon der britische Physiker schweizerischer Herkunft Paul Dirac in den Dreissigerjahren vorhergesagt hat, können die einzelnen Pole auch weit voneinander entfernt sein, solange nur eine magnetische Verbindung zwischen ihnen besteht – der so genannte Dirac-String. Im letzten Jahr ist es Forschern erstmals gelungen, derartige Monopole in einem magnetischen Material zu erzeugen. Allerdings konnten die zugehörigen Dirac-Strings nur indirekt mit Hilfe von Neutronenstreuung und auch nur bei Temperaturen nahe dem absoluten Nullpunkt beobachtet werden.

Nanomagnete bilden Monopole

Nun ist es Wissenschaftlern des Paul Scherrer Instituts und des University College Dublin gelungen, magnetische Monopole und die dazugehörigen Dirac-Strings bei Raumtemperatur direkt zu beobachten. Die Forschenden haben dafür eine zweidimensionale Anordnung von winzigen Magneten hergestellt – jeder Magnet war nur rund 500 Nanometer (= Millionstel Millimeter) lang und 150 Nanometer breit. So haben sie ein künstliches zweidimensionales magnetisches Material geschaffen, deren kleinste Bestandteile die Nanomagnete sind. In dem Experiment waren die Nanomagnete in einem Sechseckmuster angeordnet, so dass jeder an seinem Ende auf zwei weitere stiess. Wegen der entfernten Ähnlichkeit mit der Anordnung von Atomen in gewöhnlichem Eis wird diese Struktur als „künstliches Spin-Eis“ bezeichnet. „Für unser Experiment haben wir die Nanomagnete zunächst so vorbereitet, dass an den Begegnungspunkten abwechselnd zwei Nordpole und ein Südpol oder zwei Südpole und ein Nordpol aufeinanderstiessen.“ erklärt Laura Heyderman, die das Projekt von Seiten des PSI leitet. „Klappt man bei einer solchen Anordnung die Magnetisierungsrichtung eines Magneten mit Hilfe eines äusseren Magnetfelds um, entstehen an den Enden des Magneten zwei Defekte in der ursprünglichen Anordnung. Diese Defekte verhalten sich wie magnetische Monopole.“ so Heyderman weiter.

„Macht man das äussere magnetische Feld stärker, klappt bei benachbarten Magneten die Magnetisierung ebenfalls um. Dieses Umklappen geht dann wie bei einer Reihe Dominosteine weiter, so dass die beiden Monopole eines Paares auseinanderwandern – der eine immer nach rechts, der andere nach links“ erklärt Elena Mengotti, die am PSI über künstliches Spin-Eis doktoriert und den grössten Teil der Experimente durchgeführt hat. „Dabei bleiben die beiden Monopole stets durch einen eindimensionalen Pfad von Magneten verbunden, bei denen der Nordpol des einen an den Südpol des nächsten stösst, und die so den Dirac-String bilden. Auch wenn man dann das äussere Feld wieder abschaltet bleiben die Monopole am Ort – sozusagen ‚eingefroren’ im Spin-Eis.“

Synchrotronlicht zeigt Magnetismus

An einem Messplatz für magnetische Untersuchungen an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts konnten die Forschenden beobachten, wie sich die Magnetisierungsrichtung der einzelnen Nanomagnete verändert und so zeigen, wie sich die Monopole bewegen. Hier kann man nämlich die Magnetisierung der Magnete direkt abbilden und somit erstmals direkt die Bewegung der Monopole und damit das Wachsen des Dirac-Strings sichtbar machen. Diese Experimente konnten bei Raumtemperatur durchgeführt werden.

Die Theorie hinter dem Experiment

Eine lawinenartige Ummagnetisierung entlang eines eindimensionalen Dirac-Strings, wie sie hier beobachtet werden konnte, ist ein neuartiges magnetisches Phänomen und unterscheidet sich stark von Vorgängen in anderen magnetischen Materialien wie sie etwa gegenwärtig in magnetischen Festplatten verwendet werden. Das beobachtete Verhalten konnte in theoretischen Studien des Teams am University College Dublin erklärt werden. „Unsere Ergebnisse stellen nicht nur einen Durchbruch in der direkten Beobachtung von Monopolen und Dirac-Strings in künstlichem Spin-Eis dar, sondern haben auch zum ersten Mal gezeigt, wie deren Bewegung manipuliert werden kann.“ erklärt Hans-Benjamin Braun, der am University College für das Projekt verantwortlich ist.

„Digitale Bauteile, die magnetische Ströme nutzen“

„Die Erkenntnisse können auch zentral für die Architektur zukünftiger magnetischer Speicher sein. So geht man im Allgemeinen davon aus, dass die nächste Generation von Speichermedien aus einzelnen isolierten Makrospins – wie unseren Nanomagneten – bestehen wird.“ so Braun. Laura Heyderman fügt an: „Als nächstes wollen wir herausbekommen, wie man die Monopole noch gezielter auf kleinsten Skalen manipulieren kann, um sie als Speicher oder für logische Operationen einsetzen zu können. Die Idee ist, digitale Bauteile zu entwickeln, in denen man Ströme magnetischer Monopole anstelle elektrischer Ströme nutzen würde.“

Das Team

Elena Mengotti ist Doktorandin am Paul Scherrer Institut. Sie wird vom Schweizerischen Nationalfonds unterstützt und hat die experimentellen Arbeiten im Rahmen des Projekts durchgeführt.
Frithjof Nolting and Arantxa Fraile Rodríguez vom PSI sind Fachleute für magnetische Spektroskopie und Mikroskopie. Sie haben die experimentellen Arbeiten an der Synchrotron Lichtquelle Schweiz SLS angeleitet.
Hans-Benjamin Braun (Gruppenleiter) and Remo Hügli (Postdoktorand) vom University College Dublin haben die Theorie zu dem Experiment entwickelt und numerische Simulationen des Systems durchgeführt.

Laura Heyderman (Leiterin der Gruppe “Magnetische Nanostrukturen” am Paul Scherrer Institut) und Hans-Benjamin Braun haben die gemeinsame Forschungsarbeit geleitet.

Text: Paul Piwnicki

Über das PSI

Das Paul Scherrer Institut (PSI) entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1.400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:

Dr. Laura Jane Heyderman & Elena Mengotti, Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Telefon: +41 (0)56 310 2613; +41 (0)56 310 5146, E-Mail: laura.heyderman@psi.ch; elena.mengotti@psi.ch

[Deutsch, Englisch, Italienisch]

Prof. Hans-Benjamin Braun, School of Physics, University College Dublin, Dublin 4, Ireland, Telefon: + 353 1 716 2564, E-Mail: beni.braun@ucd.ie

[Deutsch, Englisch]

Originalveröffentlichung:

Elena Mengotti, Laura J. Heyderman, Arantxa Fraile Rodriguez, Frithjof Nolting, Remo V. Hügli, and Hans-Benjamin Braun, Real space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Physics Advance Online Publication 17 October 2010; DOI: 10.1038/NPHYS1794.

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/media/magnetische-monopole

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften