Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Monopole auf Wanderschaft

18.10.2010
Forschende machen Bewegung magnetischer Monopole in einer Anordnung von Nanomagneten sichtbar.

Seit Jahrzehnten suchen Forschende nach magnetischen Monopolen – einzelnen magnetischen Ladungen, die sich wie einzelne elektrische Ladungen alleine bewegen könnten.

Denn normalerweise treten magnetische Pole immer nur in Paaren auf. Nun ist es einem Team von Forschenden des Paul Scherrer Instituts und des University College Dublin gelungen, Monopole als Quasiteilchen in einer Anordnung von nanometergrossen Magneten zu erzeugen und ihre Bewegung unmittelbar mit Hilfe eines Mikroskops an der Synchrotron Lichtquelle Schweiz (SLS), das magnetische Strukturen sichtbar macht, zu beobachten.

Wie die elementaren Monopole, die zuerst vom britischen Physiker Paul Dirac 1931 vorhergesagt wurden, ist auch jeder dieser Monopole durch einen „String“, eine Art Verbindungsband, mit einem Partner entgegengesetzter Ladung verknüpft. Die beiden Monopole können sich dabei aber weitgehend unabhängig voneinander bewegen. Diese Ergebnisse sind nicht nur wissenschaftlich interessant, sondern könnten auch die Grundlage für die Entwicklung zukünftiger elektronischer Geräte bilden. Sie wurden am 17. Oktober in Nature Physics online publiziert.

Magnetische Pole treten immer nur paarweise auf – teilt man einen Stabmagneten, der immer einen Nord- und einen Südpol hat, so bekommt man nicht einzelne Pole, sondern wieder zwei Magnete mit je einem Nord- und einem Südpol. Das ist ähnlich wie bei einem Stab, bei dem man nicht zwei einzelne Enden bekommt, wenn man ihn halbiert, sondern zwei Stäbe mit je zwei Enden. Wie aber schon der britische Physiker schweizerischer Herkunft Paul Dirac in den Dreissigerjahren vorhergesagt hat, können die einzelnen Pole auch weit voneinander entfernt sein, solange nur eine magnetische Verbindung zwischen ihnen besteht – der so genannte Dirac-String. Im letzten Jahr ist es Forschern erstmals gelungen, derartige Monopole in einem magnetischen Material zu erzeugen. Allerdings konnten die zugehörigen Dirac-Strings nur indirekt mit Hilfe von Neutronenstreuung und auch nur bei Temperaturen nahe dem absoluten Nullpunkt beobachtet werden.

Nanomagnete bilden Monopole

Nun ist es Wissenschaftlern des Paul Scherrer Instituts und des University College Dublin gelungen, magnetische Monopole und die dazugehörigen Dirac-Strings bei Raumtemperatur direkt zu beobachten. Die Forschenden haben dafür eine zweidimensionale Anordnung von winzigen Magneten hergestellt – jeder Magnet war nur rund 500 Nanometer (= Millionstel Millimeter) lang und 150 Nanometer breit. So haben sie ein künstliches zweidimensionales magnetisches Material geschaffen, deren kleinste Bestandteile die Nanomagnete sind. In dem Experiment waren die Nanomagnete in einem Sechseckmuster angeordnet, so dass jeder an seinem Ende auf zwei weitere stiess. Wegen der entfernten Ähnlichkeit mit der Anordnung von Atomen in gewöhnlichem Eis wird diese Struktur als „künstliches Spin-Eis“ bezeichnet. „Für unser Experiment haben wir die Nanomagnete zunächst so vorbereitet, dass an den Begegnungspunkten abwechselnd zwei Nordpole und ein Südpol oder zwei Südpole und ein Nordpol aufeinanderstiessen.“ erklärt Laura Heyderman, die das Projekt von Seiten des PSI leitet. „Klappt man bei einer solchen Anordnung die Magnetisierungsrichtung eines Magneten mit Hilfe eines äusseren Magnetfelds um, entstehen an den Enden des Magneten zwei Defekte in der ursprünglichen Anordnung. Diese Defekte verhalten sich wie magnetische Monopole.“ so Heyderman weiter.

„Macht man das äussere magnetische Feld stärker, klappt bei benachbarten Magneten die Magnetisierung ebenfalls um. Dieses Umklappen geht dann wie bei einer Reihe Dominosteine weiter, so dass die beiden Monopole eines Paares auseinanderwandern – der eine immer nach rechts, der andere nach links“ erklärt Elena Mengotti, die am PSI über künstliches Spin-Eis doktoriert und den grössten Teil der Experimente durchgeführt hat. „Dabei bleiben die beiden Monopole stets durch einen eindimensionalen Pfad von Magneten verbunden, bei denen der Nordpol des einen an den Südpol des nächsten stösst, und die so den Dirac-String bilden. Auch wenn man dann das äussere Feld wieder abschaltet bleiben die Monopole am Ort – sozusagen ‚eingefroren’ im Spin-Eis.“

Synchrotronlicht zeigt Magnetismus

An einem Messplatz für magnetische Untersuchungen an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts konnten die Forschenden beobachten, wie sich die Magnetisierungsrichtung der einzelnen Nanomagnete verändert und so zeigen, wie sich die Monopole bewegen. Hier kann man nämlich die Magnetisierung der Magnete direkt abbilden und somit erstmals direkt die Bewegung der Monopole und damit das Wachsen des Dirac-Strings sichtbar machen. Diese Experimente konnten bei Raumtemperatur durchgeführt werden.

Die Theorie hinter dem Experiment

Eine lawinenartige Ummagnetisierung entlang eines eindimensionalen Dirac-Strings, wie sie hier beobachtet werden konnte, ist ein neuartiges magnetisches Phänomen und unterscheidet sich stark von Vorgängen in anderen magnetischen Materialien wie sie etwa gegenwärtig in magnetischen Festplatten verwendet werden. Das beobachtete Verhalten konnte in theoretischen Studien des Teams am University College Dublin erklärt werden. „Unsere Ergebnisse stellen nicht nur einen Durchbruch in der direkten Beobachtung von Monopolen und Dirac-Strings in künstlichem Spin-Eis dar, sondern haben auch zum ersten Mal gezeigt, wie deren Bewegung manipuliert werden kann.“ erklärt Hans-Benjamin Braun, der am University College für das Projekt verantwortlich ist.

„Digitale Bauteile, die magnetische Ströme nutzen“

„Die Erkenntnisse können auch zentral für die Architektur zukünftiger magnetischer Speicher sein. So geht man im Allgemeinen davon aus, dass die nächste Generation von Speichermedien aus einzelnen isolierten Makrospins – wie unseren Nanomagneten – bestehen wird.“ so Braun. Laura Heyderman fügt an: „Als nächstes wollen wir herausbekommen, wie man die Monopole noch gezielter auf kleinsten Skalen manipulieren kann, um sie als Speicher oder für logische Operationen einsetzen zu können. Die Idee ist, digitale Bauteile zu entwickeln, in denen man Ströme magnetischer Monopole anstelle elektrischer Ströme nutzen würde.“

Das Team

Elena Mengotti ist Doktorandin am Paul Scherrer Institut. Sie wird vom Schweizerischen Nationalfonds unterstützt und hat die experimentellen Arbeiten im Rahmen des Projekts durchgeführt.
Frithjof Nolting and Arantxa Fraile Rodríguez vom PSI sind Fachleute für magnetische Spektroskopie und Mikroskopie. Sie haben die experimentellen Arbeiten an der Synchrotron Lichtquelle Schweiz SLS angeleitet.
Hans-Benjamin Braun (Gruppenleiter) and Remo Hügli (Postdoktorand) vom University College Dublin haben die Theorie zu dem Experiment entwickelt und numerische Simulationen des Systems durchgeführt.

Laura Heyderman (Leiterin der Gruppe “Magnetische Nanostrukturen” am Paul Scherrer Institut) und Hans-Benjamin Braun haben die gemeinsame Forschungsarbeit geleitet.

Text: Paul Piwnicki

Über das PSI

Das Paul Scherrer Institut (PSI) entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1.400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:

Dr. Laura Jane Heyderman & Elena Mengotti, Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Telefon: +41 (0)56 310 2613; +41 (0)56 310 5146, E-Mail: laura.heyderman@psi.ch; elena.mengotti@psi.ch

[Deutsch, Englisch, Italienisch]

Prof. Hans-Benjamin Braun, School of Physics, University College Dublin, Dublin 4, Ireland, Telefon: + 353 1 716 2564, E-Mail: beni.braun@ucd.ie

[Deutsch, Englisch]

Originalveröffentlichung:

Elena Mengotti, Laura J. Heyderman, Arantxa Fraile Rodriguez, Frithjof Nolting, Remo V. Hügli, and Hans-Benjamin Braun, Real space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Physics Advance Online Publication 17 October 2010; DOI: 10.1038/NPHYS1794.

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/media/magnetische-monopole

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie