Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

18.01.2017

Kein Unterschied zwischen Protonen und Antiprotonen messbar

So offensichtlich es ist, dass Materie existiert, ebenso rätselhaft ist noch immer ihre Herkunft. Wissenschaftler suchen daher nach dem kleinen Unterschied zwischen einem Teilchen und seinem Antiteilchen, der die Existenz von Materie erklären könnte.


BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf

Foto: Stefan Sellner, RIKEN/BASE


BASE-Penningfallensystem, das zur Messung des magnetischen Moments des Antiprotons verwendet wurde.

Foto: Georg Schneider, JGU/BASE

Die BASE-Kollaboration am Forschungszentrum CERN hat bei dieser Suche neue Maßstäbe gesetzt, indem sie eine wichtige Eigenschaft des Antiprotons mit höchster Genauigkeit vermessen konnte. Der g-Faktor, ein Maß für das magnetische Moment, wurde dabei gegenüber früheren Messungen um den Faktor sechs verbessert.

Die Idee, dass so etwas wie Antimaterie existieren müsste, kam Ende der 1920er Jahre auf. Nur wenige Jahre später wurden erstmals Positronen, die Antiteilchen von Elektronen, entdeckt. Während Positronen auf der Erde natürlicherweise vorkommen, müssen Antiprotonen, die Antiteilchen von Protonen, allerdings künstlich erzeugt werden. Der Speicherring „Antiproton Decelerator“ des CERN produziert gekühlte Antiprotonen in großer Menge für ganz unterschiedliche Antimaterie-Studien.

Bei den Experimenten der BASE-Gruppe, an der die Abteilung „Gespeicherte und Gekühlte Ionen“ des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg beteiligt ist, werden tiefgekühlte Antiprotonen einzeln in einer elektromagnetischen Teilchenfalle untersucht.

Der Aufbau besteht aus drei Penningfallen: Eine Vorratsfalle bewahrt eine Wolke von Antiprotonen für den Versuch auf und liefert einzelne Teilchen an eine Falle, die zur kontinuierlichen Messung des Magnetfelds dient, und an die eigentliche Analysefalle. Die Analysefalle wiederum wird von einer extrem großen „magnetischen Flasche“ überlagert, einem Magnetfeld mit einer Inhomogenität von 300 Kilotesla pro Quadratmeter.

Diese ultrastarke magnetische Flasche ist notwendig, um überhaupt die Spin-Flip-Technik anwenden zu können, die der Nobelpreisträger Hans Georg Dehmelt für die Vermessung des magnetischen Moments des Elektrons und des Positrons entwickelt hat. „Die Herausforderung ist in unserem Fall aber wesentlich größer, weil das magnetische Moment des Protons und des Antiprotons im Vergleich dazu etwa 660 Mal kleiner ist“, schreiben die BASE-Wissenschaftler in einer Veröffentlichung von Nature Communications.

Das Experiment zur Bestimmung der magnetischen Eigenschaften des Protons hatte Prof. Dr. Klaus Blaum im Rahmen seiner Helmholtz-Hochschul-Nachwuchsgruppe 2005 in Zusammenarbeit mit Prof. Dr. Jochen Walz an der Universität Mainz ins Leben gerufen. Mit einer Hochpräzisionsmessung des Protons aus dem Jahr 2014 nimmt die Arbeitsgruppe unangefochten die Spitzenstellung auf diesem Forschungsfeld ein.

G-Faktor mit sechsfach höherer Genauigkeit gemessen

Die Vermessung des Antiprotons folgt diesem Beispiel. Der g-Faktor wurde anhand von sechs Messungen mit einer Genauigkeit von 0,8 Millionstel bestimmt. Der Wert von 2,7928465(23) ist sechs Mal genauer als der bisherige Rekordhalter einer anderen CERN-Forschungsgruppe aus dem Jahr 2013. Noch im Jahr 2011 war das magnetische Moment des Antiprotons nur auf drei Nachkommastellen genau bekannt. Das neue Ergebnis stimmt innerhalb der erreichten experimentellen Unsicherheit mit dem 2014 in Mainz gemessenen g-Faktor des Protons von 2,792847350(9) überein.

„Das bedeutet, dass wir innerhalb der experimentellen Messunsicherheit keinen Unterschied zwischen Protonen und Antiprotonen ausmachen können. Auf diesem Niveau stimmt unsere Messung mit den Erwartungen des Standardmodels überein“, erklärt Stefan Ulmer, Sprecher der BASE-Kollaboration am CERN und früherer Mitarbeiter in der AG Walz.

Proton und Antiproton erscheinen somit weiterhin spiegelsymmetrisch und bieten vorerst noch keinen Ansatzpunkt für eine Erklärung, weshalb Materie überhaupt existiert und sich nicht in den ersten Augenblicken des Urknalls zerstrahlt hat. Die BASE-Kollaboration will in Zukunft aber noch einen Schritt weiter gehen und die Präzision ihrer Messungen weiter erhöhen, indem sie mit einer Doppelpenningfalle arbeitet., Diese schwierigere Technik kam für die Mainzer Proton-Messungen 2014 zum Einsatz und bietet eine tausendfach höhere Genauigkeit.

„Die Asymmetrie zwischen Materie und Antimaterie ist so offenkundig, irgendetwas muss passiert sein, das im Rahmen der modernen Physik bisher nicht verstanden ist. Unsere große Motivation ist es, Ansätze zu finden, die zur Lösung dieses spannenden Rätsels beitragen“, erklärt Ulmer zu den weiteren Vorhaben. Außer dem Max-Planck-Institut für Kernphysik sind an den Forschungsprojekten auch das japanische Forschungszentrum RIKEN, die Johannes Gutenberg-Universität Mainz, die Leibniz Universität Hannover und das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt beteiligt.


Originalveröffentlichung:

Hiroki Nagahama et al.
Sixfold improved single particle measurement of the magnetic moment of the antiproton.
Nature Communications 8, 14084 (2017), DOI: 10.1038/ncomms14084

Kontakt:

Prof. Dr. Klaus Blaum, MPIK
Tel.: 06221 516850
E-Mail: klaus.blaum(at)mpi-hd.mpg.de

Dr. Stefan Ulmer, Sprecher BASE-Kollaboration, CERN
Tel. +41 75 411 9072
E-Mail: stefan.ulmer(at)cern.ch

Prof. Dr. Jochen Walz, Johannes Gutenberg-Universität Mainz (JGU)
Tel. 06131 39-25976
E-Mail: Jochen.Walz(at)uni-mainz.de

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Alternder Stern bläst Materie von sich
21.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie