Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Flussröhren – der Schlüssel zur Vorhersage von Sonneneruptionen

30.10.2014

Die Vorstellung Sonneneruptionen wie Unwetter vorhersagen zu können, ist zwar noch nicht in naher Zukunft umsetzbar, aber bereits viel mehr als nur ein Traum der Physiker.

Die am 23. Oktober 2014 von einer französischen Forschergruppe in der Fachzeitschrift „Nature“ veröffentlichte Studie [1] eröffnet Perspektiven, die nicht nur für das Verständnis unseres Planeten wichtig sind, sondern auch neue Erkenntnisse für die Sicherheit unserer technologischen Gesellschaft liefern.

Eine Sonneneruption ist ein Gebilde erhöhter Strahlung innerhalb der Chromosphäre der Sonne, die durch Magnetfeldenergie gespeist wird. Kommt es zu einer Reorganisation der Bögen, die zu einer Ablösung von Plasmaschläuchen führt, beobachtet man einen erhöhten Masseausstoß.

Treffen große Mengen des von der Sonne ausgestoßenen Plasmas (eine Art dickflüssige Masse von hochenergetischen Teilchen) auf das Magnetfeld der Erde, kann dies zu erheblichen Störungen in den Stromnetzen, Satellitensystemen, Flugzeugnavigationssystemen usw. führen. Deshalb ist es wichtig zu untersuchen, wie solche Ausbrüche entstehen und zu lernen, sie vorherzusagen.

Den Forschern ist es nun gelungen, eine Vorstufe solcher Sonneneruptionen zu erkennen und zu identifizieren. Vor dem Plasmaausbruch bildet sich eine rasch anwachsende verdrillte magnetische Flussröhre, die sich auf der Oberfläche der Sonne in Form einer großen langen Schleife von mehreren Millionen Kilometern ausbreitet.

Erreicht diese Flussröhre eine gewisse Höhe und ein gewisses Maß an Energie, kann diese riesige Struktur auseinanderbrechen und dadurch ein koronaler Massenauswurf entstehen. Die entscheidende Frage ist nun, ob diese hochenergetischen Teilchen eines solchen Auswurfs zwei bis vier Tage später die Erde treffen und einen geomagnetischen Sturm auslösen.

Die Erkenntnis, dass solche magnetischen Flussröhren Vorläufererscheinungen von Sonneneruptionen sind, ist nicht neu. Die Arbeiten von Tahar Amari und seinen Kollegen vom Zentrums für Theoretische Physik (CNRS [2], Ecole Polytechnique) und des Labors für Astrophysik, Interpretation und Modellierung (CNRS / CEA [3]/ Universität Paris Diderot-) liefern jedoch hierfür fundierte Beweise und eine erneute Bestätigung.

Die Forscher beobachteten und analysierten die Entstehung einer großen Eruption, die sich in der Nacht vom 12. auf den 13. Dezember 2006 ereignete. Dank der Daten, die das Solar Optical Telescope an Bord des japanischen Weltraumteleskops Hinode von einer Sonneneruption im Dezember 2006 geliefert hatte, konnten sie das Magnetfeld auf der Sonnenoberfläche um die Eruption herum genauestens kartographieren. Als Vergleichswert nahmen die Forscher die magnetischen Messungen vier Tage vor der Eruption.

Anschließend haben sie das Magnetfeld der gesamten Sonnenatmosphäre der beobachteten Region herausgerechnet, einschließlich der Korona (Gasschicht). Die Korona ist die Atmosphäre der Sonne, die Temperaturen von über 1 Million Grad erreichen kann und wo direkte Messungen des magnetischen Feldes unmöglich sind. Sie ist der Ursprungsort der Eruptionen.

Als nächstes verfolgten die Forscher die Entwicklung des Magnetfelds, die sie zuvor mithilfe eines numerischen Simulationsmodells vorausgesagt hatten. “Laut unserem Modell sollte bis zu einem Tag vor der Eruption keine magnetische Flussröhre entstehen”, so Tahar Amari. Ab dem Tag X bildete sich eine große Flussröhre, die bis 20:30 Uhr stetig anwuchs und eine gewaltige Größe erreichte. Beobachtungen deuten darauf hin, dass die Eruption vier Stunden später stattfand.

Mit ihrer Simulation waren die Forscher in der Lage, die von der großen verdrillten Struktur gespeicherte Energie zu berechnen. Sie wurde anschließend mit der beim Auswurf direkt gemessenen Energie verglichen. Die Forscher fanden heraus, dass, sobald die Flussröhre eine bestimmte Schwellenenergie erreicht, eine kleine Instabilität genügt, um die Eruption auszulösen. Daraus ergibt sich, dass die Eruption durch zwei miteinander verknüpfte Kriterien ausgelöst wird: zum einen aufgrund der in der Flussröhre angewachsenen magnetischen Energie und zum anderen aufgrund seiner Instabilität. Nach Meinung der Physiker ist dies eine der wichtigsten Schlussfolgerungen der Studie.


[1] Originalarbeit: „Characterizing and predicting the magnetic environment leading to solar eruptions“ – http://www.nature.com/nature/journal/v514/n7523/full/nature13815.html

[2] CNRS – französisches Zentrum für wissenschaftliche Forschung

[3] CEA – Behörde für Atomenergie und alternative Energien

Quelle:

“Les cordes magnétiques, clefs des éruptions solaires”, Artikel aus Le Monde – 23.10.2014 – http://abonnes.lemonde.fr/planete/article/2014/10/23/les-cordes-magnetiques-clef...


Redakteure: Daniela Niethammer, daniela.niethammer@diplomatie.gouv.fr

– Aurélien Filiali, aurelien.filiali@diplomatie.gouv.fr


Weitere Informationen:

http://www.wissenschaft-frankreich.de

Marie de Chalup | Wissenschaft Frankreich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie