Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisch aktive Weiße Zwerge erscheinen jünger als sie sind

20.10.2014

Forscher finden Zusammenhang zwischen Magnetfeldern und atmosphärischer Konvektion

Ein internationales Team von Astronomen mit Beteiligung der Universität Göttingen hat herausgefunden, warum Magnetfelder in so genannten kalten Weißen Zwergen häufiger vorkommen als in heißeren, jüngeren Weißen Zwergen.


Verhältnis zwischen Magnetfeldern (rot) und Temperatur (grau) auf der Oberfläche des Weißen Zwerges WZ 1953-011 in verschiedenen Rotationsphasen.

Foto: Universität Göttingen


Dr. Denis Shulyak

Foto: Universität Göttingen

Die Wissenschaftler konnten zeigen, dass starke Magnetfelder in der Lage sind, die Konvektion (Wärmeströmung) über die gesamte Oberfläche eines kalten, magnetisch aktiven Weißen Zwergs zu unterdrücken. Sie kühlen sich deshalb im Vergleich zu Weißen Zwergen mit schwachen oder nicht messbaren Magnetfeldern langsamer ab und erscheinen dadurch jünger, als sie in Wirklichkeit sind. Die Ergebnisse wurden in der Fachzeitschrift Nature veröffentlicht.

Weiße Zwerge (WZ) sind die Überbleibsel von Sternen mittlerer Masse am Ende ihres Entwicklungsstadiums. Da im Inneren eines Weißen Zwerges keine Kernfusion stattfindet, kühlen sie sich immer weiter ab – ähnlich wie ein Topf mit heißem Wasser, der von der Kochplatte genommen wird. Es besteht daher ein unmittelbarer Zusammenhang zwischen der Oberflächentemperatur und dem Alter des Weißen Zwerges.

Besitzt der Vorläufer eines Weißen Zwerges ein Magnetfeld, wird dieses durch den Kontraktionsprozess bei seiner Entwicklung hin zu einem WZ um mehrere Größenordnungen verstärkt. Auf diese Weise entstehen so genannte „Magnetische Weiße Zwerge“ (MWZ). Da Magnetfelder mit der Zeit abklingen und sich die Oberflächentemperatur von WZ während ihrer Abkühlung verringert, könnte man erwarten, dass mehr Weiße Zwerge mit geringen oder nicht vorhandenen Magnetfeldern bei kühleren Temperaturen existieren.

Das Gegenteil scheint allerdings der Fall zu sein: Die Wissenschaftler fanden heraus, dass das Magnetfeld möglicherweise die globale Oberflächenkonvektion in kalten MWZ kontrolliert. „Bei der Analyse der Lichtvariabilität des kalten Weißen Zwerges WZ 1953-011 haben wir einen direkten Zusammenhang zwischen der lokalen Magnetfeldstärke und der Oberflächentemperatur gefunden“, erklärt Dr. Denis Shulyak vom Institut für Astrophysik der Universität Göttingen. Dieses Ergebnis deutet darauf hin, dass das Magnetfeld die atmosphärische Konvektion unterdrückt, wodurch auf der Oberfläche des Sterns dunkle Flecken in den magnetisch aktiven Regionen entstehen, ähnlich wie Sonnenflecken.

Im Unterschied zu Sonnenflecken jedoch, die eine kurze Lebensdauer von einigen Wochen bis Monaten haben, sind die magnetischen Verhältnisse und ihre assoziierten Temperaturen auf WZ 1953-011 seit mindestens zehn Jahren unverändert und damit äußerst stabil. „Aus diesem Grund sollte die Mehrheit von konvektiven MWZ photometrische Variabilität zeigen. Und das haben Astronomen in der Tat auch beobachtet“, so Dr. Shulyak.

Ein so starkes globales Magnetfeld (mehrere hundert Kilo-Gauß und darüber) ist in der Lage, konvektive Strömungen auf der gesamte Oberfläche und selbst tief im Inneren des Stern zu bremsen. „In WZ mit Oberflächentemperaturen unterhalb von etwa 12.000 Kelvin transportiert die Konvektion einen erheblichen Teil des gesamten Energieflusses von tieferen Schichten zur Oberfläche. Dessen Unterdrückung durch starke Magnetfelder vermindert somit die Leuchtkraft. Wenn man jetzt noch bedenkt, dass die Abkühlungszeit von WZ invers proportional zu ihrer Leuchtkraft ist, dann sollten Objekte mit global unterdrückter Konvektion längere Abkühlungszeiten als ihre nicht-magnetischen Zwillinge haben. Daher liefert die magnetische Unterdrückung der Abkühlung eine natürliche Erklärung für die erhöhte Anzahl von MWZ bei kühleren Temperaturen, wo Konvektion der dominierende Energietransportmechanismus ist. Dieses Ergebnis stimmt vollkommen mit theoretischen Vorhersagen überein“, erläutert Dr. Shulyak.

Die Analyse der photometrischen Variabilität von MWZ und deren unerwartet hohen Häufigkeit, verglichen mit nicht-magnetischen Sternen, sowie ihre hohe Dispersion der räumlichen Geschwindigkeiten (welche Information über das Alter des Sterns enthält) deuten unmittelbar auf die Existenz von magnetischer Unterdrückung der Abkühlung in stark magnetischen, isolierten WZ hin.

„Wenn wir uns den WZ als einen Topf mit heißem Wasser vorstellen, der zum Abkühlen auf einem Tisch steht, dann wird ein Deckel seine Abkühlung verlangsamen. Starke Magnetfelder in WZ fungieren als eine Art Deckel, die deren Konvektion und damit deren Wärmeverlust unterdrücken. Unsere Ergebnisse implizieren, dass das Alter der meisten magnetischen und kühlen MWZ unterschätzt wird. Wir müssen deshalb unsere Interpretation des Ablaufs der Abkühlung in MWZ und infolgedessen eventuell auch unser Verständnis von der Entwicklung unserer Galaxie sowie des Universums anpassen“, so Dr. Shulyak.

Originalveröffentlichung: Gennady Valyavin et al. Suppression of cooling by strong magnetic fields in white dwarf stars. Nature 2014. Doi: 10.1038/nature13863.

Kontaktadresse:
Dr. Denis Shulyak
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Astrophysik
Friedrich-Hund-Platz 1, 37077 Göttingen, Telefon (0551) 39-5055
E-Mail: denis@astro.physik.uni-goettingen.de

Weitere Informationen:

http://www.astro.physik.uni-goettingen.de/~areiners/AR/AR.htm

Thomas Richter | Georg-August-Universität Göttingen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
18.05.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics