Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfelder in einer Entfernung von fünf Milliarden Lichtjahren entdeckt

29.08.2017

Magnetfelder spielen eine wichtige Rolle bei der Erforschung der Physik des interstellaren Mediums. Es ist sehr schwierig, Magnetfelder in großen Entfernungen im frühen Universum nachzuweisen. Einem Forscherteam unter der Leitung von Sui Ann Mao vom MPIfR Bonn ist es gelungen, das Magnetfeld in einer weit entfernten Galaxie zu vermessen. Die Rotverschiebung von 0,439 entspricht einer Distanz von 4,6 Milliarden Lichtjahren. Diese Galaxie wirkt als Gravitationslinse im System CLASS B1152+199 und ist die momentan entfernteste Galaxie, in der ein zusammenhängendes Magnetfeld beobachtet wurde. Die Messungen ermöglichen neue Einsichten in Ursprung und Entwicklung von Magnetfeldern im Universum.

Durch Beobachtungen einer gewaltigen kosmischen Linse mit dem amerikanischen „Very Large Array“-Radioteleskop ist es einem Team von Astronomen gelungen, zusammenhängende Magnetfeldstrukturen in einer Galaxie in knapp fünf Milliarden Lichtjahren Entfernung nachzuweisen. Die Daten geben neue Anhaltspunkte zur Klärung eines wesentlichen Aspekts der Kosmologie: Ursprung und Beschaffenheit von kosmischen Magnetfeldern, die eine wichtige Rolle bei der Entwicklung von Galaxien spielen.


Links: HST-Bild des Systems CLASS B1152+199, durch den Gravitationslinseneffekt der Vordergrundgalaxie in zwei unterschiedliche Bilder A und B aufgespaltet. Rechts: Wirkung der Faraday-Rotation.

Zusammenstellung: Sui Ann Mao. Optisches Bild vom Weltraumteleskop Hubble, aus dem Hubble Legacy Archive (Rusin et al. 2002, MNRAS, 330, 205-211).


Die Strahlung des Quasars in einer Entfernung von 7,9 Milliarden Lichtjahren wird durch die als Gravitationslinse wirkende Vordergrundgalaxie in 4,6 Milliarden Lichtjahren Entfernung gekrümmt.

Sui Ann Mao

Wenn ein Hintergrundquasar in großer Entfernung und eine etwas nähergelegene Vordergrundgalaxie direkt hintereinander in der Sichtlinie stehen wie im Fall des Systems CLASS B1152+199, kann der Lichtweg des weiter entfernten Quasars durch den Gravitationslinseneffekt der Vordergrundgalaxie so gekrümmt werden, dass zwei separate Bilder des Quasars von der Erde aus zu sehen sind.

Da die Strahlung des Quasars unterschiedliche Bereiche der als Gravitationslinse wirkenden Galaxie passiert, wird es möglich, Magnetfelder in einer Galaxie zu untersuchen, die wir sonst gar nicht erfassen könnten. Das Forscherteam hat eine spezielle Eigenschaft der gemessenen Radiowellen ausgewertet, die als Polarisation bezeichnet wird und die durch das Magnetfeld der Vordergrundgalaxie verändert wird.

Die Astronomen haben speziell diese Veränderung, den sogenannten Faraday-Effekt, in den beiden unterschiedlichen Bildern des Hintergrundquasars vermessen und konnten so zeigen, dass die als Gravitationslinse wirkende Galaxie über ein großskaliges zusammenhängendes Magnetfeld verfügt.

Die Entdeckung eines starken zusammenhängenden Magnetfelds in einer Galaxie in knapp fünf Milliarden Lichtjahren Entfernung und damit zu einer Zeit von nur zwei Dritteln des heutigen Alters des Universums ermöglicht den Forschern zu vermessen, wie schnell sich diese Magnetfelder in Galaxien aufbauen.

„Obwohl diese weit entfernte Galaxie im Vergleich zu heutigen Galaxien weniger Zeit hatte, ihr Magnetfeld aufzubauen, war sie trotzdem dazu in der Lage“, sagt Sui Ann Mao, Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus“ am Max-Planck-Institut für Radioastronomie in Bonn und Erstautorin der Veröffentlichung. „Unsere Untersuchungen unterstützen die Idee, dass galaktische Magnetfelder durch einen Dynamoprozess aufgebaut werden.“

Trotz großer Fortschritte im Bereich der Kosmologie ist es nach wie vor ein Rätsel, wie der Magnetismus im Universum entstanden ist. Die ursprünglich sehr schwachen Magnetfelder ähneln in keiner Weise denjenigen, die wir in den heutigen Galaxien beobachten. Dynamo-Prozesse im turbulenten interstellaren Gas verstärkten sie und ordneten sie um.

Die Beschreibung, wie der Dynamo großskalige Strukturen im Magnetfeld aufbaut, ist ebenfalls ein weitgehend ungelöstes Problem. „Unsere jetzigen Messungen führen zu der bisher besten Beschreibung, wie Dynamos in Galaxien wirken“, betont Ellen Zweibel von der University of Wisconsin in Madison, USA.

“Das ist ein aufregendes Resultat – zum ersten Mal konnten wir verlässlich sowohl die Stärke wie auch die Struktur des Magnetfelds in einer weit entfernten Galaxie bestimmen“, sagt Sui Ann Mao. Das Gravitationslinsensystem CLASS B1152+199 ist zur Zeit der Rekordhalter als am weitesten entfernte Galaxie, bei der Eigenschaften ihres Magnetfelds vermessen werden konnten. „Unsere Arbeit zeigt, wie effektiv die Verbindung des starken Gravitationslinseneffekts mit Breitband-Radiopolarisationsmessungen dabei ist, Magnetfelder im hochrotverschobenen Universum zu untersuchen“, bemerkt sie abschließend.

Das „National Radio Astronomy Observatory“ ist eine Einrichtung der „National Science Foundation”, und wird von der „Associated Universities, Inc. betrieben”

Das „Hubble Legacy Archive” wird in Zusammenarbeit von „Space Telescope Science Institute” (STScI/NASA), „Space Telescope European Coordinating Facility” (ST-ECF/ESA) und dem kanadischen „Astronomy Data Centre” (CADC/NRC/CSA) betrieben.

Das Forscherteam besteht aus Sui Ann Mao, der Erstautorin, sowie Chris Carilli, Bryan M. Gaensler, Olaf Wucknitz, Charles Keeton, Aritra Basu, Rainer Beck, Philipp P. Kronberg und Ellen Zweibel.

Sui Ann Mao ist Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus” am Max-Planck-Institut für Radioastronomie.

Originalveröffentlichung:

Detection of microgauss coherent magnetic fields in a galaxy five billion years ago, S. A. Mao et al., 2017, Nature Astronomy Advanced Online Publication (August 28, 2017). DOI: 10.1038/s41550-017-0218
http://dx.doi.org/10.1038/s41550-017-0218 (nach Ablauf der Sperrfrist)

Kontakt:

Dr. Sui Ann Mao,
Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-246
E-mail: mao@mpifr-bonn.mpg.de

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. Olaf Wucknitz
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 481
E-mail: wucknitz@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2017/7

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik