Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfelder in einer Entfernung von fünf Milliarden Lichtjahren entdeckt

29.08.2017

Magnetfelder spielen eine wichtige Rolle bei der Erforschung der Physik des interstellaren Mediums. Es ist sehr schwierig, Magnetfelder in großen Entfernungen im frühen Universum nachzuweisen. Einem Forscherteam unter der Leitung von Sui Ann Mao vom MPIfR Bonn ist es gelungen, das Magnetfeld in einer weit entfernten Galaxie zu vermessen. Die Rotverschiebung von 0,439 entspricht einer Distanz von 4,6 Milliarden Lichtjahren. Diese Galaxie wirkt als Gravitationslinse im System CLASS B1152+199 und ist die momentan entfernteste Galaxie, in der ein zusammenhängendes Magnetfeld beobachtet wurde. Die Messungen ermöglichen neue Einsichten in Ursprung und Entwicklung von Magnetfeldern im Universum.

Durch Beobachtungen einer gewaltigen kosmischen Linse mit dem amerikanischen „Very Large Array“-Radioteleskop ist es einem Team von Astronomen gelungen, zusammenhängende Magnetfeldstrukturen in einer Galaxie in knapp fünf Milliarden Lichtjahren Entfernung nachzuweisen. Die Daten geben neue Anhaltspunkte zur Klärung eines wesentlichen Aspekts der Kosmologie: Ursprung und Beschaffenheit von kosmischen Magnetfeldern, die eine wichtige Rolle bei der Entwicklung von Galaxien spielen.


Links: HST-Bild des Systems CLASS B1152+199, durch den Gravitationslinseneffekt der Vordergrundgalaxie in zwei unterschiedliche Bilder A und B aufgespaltet. Rechts: Wirkung der Faraday-Rotation.

Zusammenstellung: Sui Ann Mao. Optisches Bild vom Weltraumteleskop Hubble, aus dem Hubble Legacy Archive (Rusin et al. 2002, MNRAS, 330, 205-211).


Die Strahlung des Quasars in einer Entfernung von 7,9 Milliarden Lichtjahren wird durch die als Gravitationslinse wirkende Vordergrundgalaxie in 4,6 Milliarden Lichtjahren Entfernung gekrümmt.

Sui Ann Mao

Wenn ein Hintergrundquasar in großer Entfernung und eine etwas nähergelegene Vordergrundgalaxie direkt hintereinander in der Sichtlinie stehen wie im Fall des Systems CLASS B1152+199, kann der Lichtweg des weiter entfernten Quasars durch den Gravitationslinseneffekt der Vordergrundgalaxie so gekrümmt werden, dass zwei separate Bilder des Quasars von der Erde aus zu sehen sind.

Da die Strahlung des Quasars unterschiedliche Bereiche der als Gravitationslinse wirkenden Galaxie passiert, wird es möglich, Magnetfelder in einer Galaxie zu untersuchen, die wir sonst gar nicht erfassen könnten. Das Forscherteam hat eine spezielle Eigenschaft der gemessenen Radiowellen ausgewertet, die als Polarisation bezeichnet wird und die durch das Magnetfeld der Vordergrundgalaxie verändert wird.

Die Astronomen haben speziell diese Veränderung, den sogenannten Faraday-Effekt, in den beiden unterschiedlichen Bildern des Hintergrundquasars vermessen und konnten so zeigen, dass die als Gravitationslinse wirkende Galaxie über ein großskaliges zusammenhängendes Magnetfeld verfügt.

Die Entdeckung eines starken zusammenhängenden Magnetfelds in einer Galaxie in knapp fünf Milliarden Lichtjahren Entfernung und damit zu einer Zeit von nur zwei Dritteln des heutigen Alters des Universums ermöglicht den Forschern zu vermessen, wie schnell sich diese Magnetfelder in Galaxien aufbauen.

„Obwohl diese weit entfernte Galaxie im Vergleich zu heutigen Galaxien weniger Zeit hatte, ihr Magnetfeld aufzubauen, war sie trotzdem dazu in der Lage“, sagt Sui Ann Mao, Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus“ am Max-Planck-Institut für Radioastronomie in Bonn und Erstautorin der Veröffentlichung. „Unsere Untersuchungen unterstützen die Idee, dass galaktische Magnetfelder durch einen Dynamoprozess aufgebaut werden.“

Trotz großer Fortschritte im Bereich der Kosmologie ist es nach wie vor ein Rätsel, wie der Magnetismus im Universum entstanden ist. Die ursprünglich sehr schwachen Magnetfelder ähneln in keiner Weise denjenigen, die wir in den heutigen Galaxien beobachten. Dynamo-Prozesse im turbulenten interstellaren Gas verstärkten sie und ordneten sie um.

Die Beschreibung, wie der Dynamo großskalige Strukturen im Magnetfeld aufbaut, ist ebenfalls ein weitgehend ungelöstes Problem. „Unsere jetzigen Messungen führen zu der bisher besten Beschreibung, wie Dynamos in Galaxien wirken“, betont Ellen Zweibel von der University of Wisconsin in Madison, USA.

“Das ist ein aufregendes Resultat – zum ersten Mal konnten wir verlässlich sowohl die Stärke wie auch die Struktur des Magnetfelds in einer weit entfernten Galaxie bestimmen“, sagt Sui Ann Mao. Das Gravitationslinsensystem CLASS B1152+199 ist zur Zeit der Rekordhalter als am weitesten entfernte Galaxie, bei der Eigenschaften ihres Magnetfelds vermessen werden konnten. „Unsere Arbeit zeigt, wie effektiv die Verbindung des starken Gravitationslinseneffekts mit Breitband-Radiopolarisationsmessungen dabei ist, Magnetfelder im hochrotverschobenen Universum zu untersuchen“, bemerkt sie abschließend.

Das „National Radio Astronomy Observatory“ ist eine Einrichtung der „National Science Foundation”, und wird von der „Associated Universities, Inc. betrieben”

Das „Hubble Legacy Archive” wird in Zusammenarbeit von „Space Telescope Science Institute” (STScI/NASA), „Space Telescope European Coordinating Facility” (ST-ECF/ESA) und dem kanadischen „Astronomy Data Centre” (CADC/NRC/CSA) betrieben.

Das Forscherteam besteht aus Sui Ann Mao, der Erstautorin, sowie Chris Carilli, Bryan M. Gaensler, Olaf Wucknitz, Charles Keeton, Aritra Basu, Rainer Beck, Philipp P. Kronberg und Ellen Zweibel.

Sui Ann Mao ist Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus” am Max-Planck-Institut für Radioastronomie.

Originalveröffentlichung:

Detection of microgauss coherent magnetic fields in a galaxy five billion years ago, S. A. Mao et al., 2017, Nature Astronomy Advanced Online Publication (August 28, 2017). DOI: 10.1038/s41550-017-0218
http://dx.doi.org/10.1038/s41550-017-0218 (nach Ablauf der Sperrfrist)

Kontakt:

Dr. Sui Ann Mao,
Leiterin der Minerva-Forschungsgruppe „Kosmischer Magnetismus“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-246
E-mail: mao@mpifr-bonn.mpg.de

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. Olaf Wucknitz
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525 481
E-mail: wucknitz@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2017/7

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie