Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfelder bereiten Sternengeburten vor

17.11.2011
Astronomen des Max-Planck-Instituts für Astronomie haben erstmals die großräumige Ausrichtung von Magnetfeldern in riesigen Gas- und Staubwolken einer anderen Galaxie gemessen.

Ihre Ergebnisse legen nahe, dass Magnetfelder eine Schlüsselrolle dabei spielen, solche Materiewolken zu verdichten und so die Geburt neuer Sterne vorzubereiten. Die Ergebnisse werden am 24. November in der Zeitschrift Nature veröffentlicht (Onlineversion: 16. November).


Bild des Dreiecksnebels M 33. Bei dieser Galaxie sehen die Astronomen direkt von oben auf die Scheibe mit ihren Spiralarmen. Die rosa Regionen enthalten neu geborene Sterne.
Bild: Thomas V. Davis (http://tvdavisastropics.com)

Sterne und Planeten werden geboren, wenn riesige Wolken aus interstellarem Gas und Staub kollabieren. Die Sternkinderstuben, die dabei entstehen, sind für einige der schönsten astronomischen Bilder verantwortlich: Farbenfrohe Gasnebel, beleuchtet durch die hellen, neugeborene Sterne.

Über die so genannten Molekülwolken, die dort kollabieren, ist einiges bekannt: Sie bestehen vor allem aus Wasserstoffmolekülen – ungewöhnlich, da der Kosmos nur selten Bedingungen bietet, unter denen sich Wasserstoffatome zu Molekülen verbinden können. Kartiert man die Verteilung solcher Wolken in einer Spiralgalaxie wie unserer Milchstraße, dann sieht man, dass sie entlang der Spiralarme angeordnet sind.

Aber wie entstehen diese Wolken? Was bringt Materie dazu, sich zu Wolken zusammenzuballen, die hundert oder sogar tausend Mal dichter sind als das umgebende interstellare Gas?

Ein Kandidat für den Posten des stellaren Geburtshelfers sind die Magnetfelder einer Galaxie. Jeder, der schon einmal das klassische Experiment gesehen hat, in dem ein Magnet unter eine Platte mit Eisenspänen gehalten wird, weiß, dass Magnetfelder der Materie eine Ordnung aufprägen können. Einige Forscher haben argumentiert, dass etwas Ähnliches bei den Molekülwolken passiert: dass die Magnetfelder einer Galaxie die Kondensation von interstellarer Materie lenken und ihnen eine Ordnung aufprägen, welche die Bildung dichterer Wolken und den weiteren Kollaps begünstigt.

Einige Astronomen sehen dies als Schlüssel zur Vorbereitung der Sternentstehung. Andere halten dagegen, dass der Gravitationseinfluss der Wolkenmaterie und turbulente Gasbewegungen im Wolkeninneren so stark sind, dass der Einfluss äußerer Magnetfelder keine wesentliche Rolle spielen sollte.

In unserer eigenen Galaxie können wir nur schwer überprüfen, welche der beiden Fraktionen richtig liegt. Wir sind mit unseren Sonnensystem im Inneren der galaktischen Scheibe der Milchstraße gefangen; die nötigen Beobachtungen gelingen aber am besten, wenn man von oben auf die Scheibe blicken kann. Daher wählten Hua-bai Li und Thomas Henning vom Max-Planck-Institut für Astronomie ein anderes Beobachtungsziel: Die Galaxie M33, auch als Dreiecksnebel bekannt, für kosmische Verhältnisse mit 3 Millionen Lichtjahren Entfernung einer unserer nächsten galaktischen Nachbarn. Bei dieser Galaxie blickt der irdische Beobachter direkt von oben auf die Scheibe (vgl. Abb. 1).

Mit Hilfe des Submillimeter Array (SMA), einem Verbundteleskop am Mauna Kea Observatory auf der gleichnamigen Insel Hawaiis, untersuchten Li und Henning spezifische Eigenschaften des Lichts, das uns von M 33 erreicht – Eigenschaften, die mit der Orientierung der Magnetfelder in der beobachteten Region zusammenhängen. Sie fanden, dass die Magnetfelder der sechs massereichsten Riesen-Molekülwolken der Galaxie mitnichten chaotisch-turbulent sind, sondern direkt dem Verlauf der Spiralarme folgen.

Würde die Turbulenz in diesen Wolken die dominante Rolle spielen, würde man im Gegensatz dazu erwarten, dass die Magnetfelder in der Wolke ungeordnet und zufällig durcheinander laufen.

Die Beobachtungen von Li und Henning sind damit ein deutlicher Hinweis, dass Magnetfelder in der Tat eine wichtige Rolle bei der Entstehung dichter Molekülwolken spielen dürften – und damit den Boden bereiten für die Entstehung von Sternen und Planetensystemen wie unserem eigenen.

Kontakt

Hua-bai Li (Erstautor)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 459
E-Mail: li@mpia.de
Thomas Henning (Co-Autor)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 200
E-Mail: henning@mpia.de
Markus Pössel (public relations)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de
Hintergrundinformationen
Die hier beschriebenen Ergebnisse erscheinen am 24. November 2011 als H. Li & T. Henning, »The alignment of molecular cloud magnetic fields with the spiral arms in M33«, in der Zeitschrift Nature. Die Online-Version erscheint am 16. November.

Das Forschungsprojekt wurde unterstützt vom Max-Planck-Institut für Astronomie und vom Harvard-Smithsonian Center for Astrophysics. Das Submillimeter Array ist ein Gemeinschaftsprojekt des Smithsonian Astrophysical Observatory und des Academia Sinica Institute of Astronomy and Astrophysics. Es wird durch die Smithsonian Institution und die Academia Sinica finanziert.

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2011/PR111116/PR_111116_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise