Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfelder bereiten Sternengeburten vor

17.11.2011
Astronomen des Max-Planck-Instituts für Astronomie haben erstmals die großräumige Ausrichtung von Magnetfeldern in riesigen Gas- und Staubwolken einer anderen Galaxie gemessen.

Ihre Ergebnisse legen nahe, dass Magnetfelder eine Schlüsselrolle dabei spielen, solche Materiewolken zu verdichten und so die Geburt neuer Sterne vorzubereiten. Die Ergebnisse werden am 24. November in der Zeitschrift Nature veröffentlicht (Onlineversion: 16. November).


Bild des Dreiecksnebels M 33. Bei dieser Galaxie sehen die Astronomen direkt von oben auf die Scheibe mit ihren Spiralarmen. Die rosa Regionen enthalten neu geborene Sterne.
Bild: Thomas V. Davis (http://tvdavisastropics.com)

Sterne und Planeten werden geboren, wenn riesige Wolken aus interstellarem Gas und Staub kollabieren. Die Sternkinderstuben, die dabei entstehen, sind für einige der schönsten astronomischen Bilder verantwortlich: Farbenfrohe Gasnebel, beleuchtet durch die hellen, neugeborene Sterne.

Über die so genannten Molekülwolken, die dort kollabieren, ist einiges bekannt: Sie bestehen vor allem aus Wasserstoffmolekülen – ungewöhnlich, da der Kosmos nur selten Bedingungen bietet, unter denen sich Wasserstoffatome zu Molekülen verbinden können. Kartiert man die Verteilung solcher Wolken in einer Spiralgalaxie wie unserer Milchstraße, dann sieht man, dass sie entlang der Spiralarme angeordnet sind.

Aber wie entstehen diese Wolken? Was bringt Materie dazu, sich zu Wolken zusammenzuballen, die hundert oder sogar tausend Mal dichter sind als das umgebende interstellare Gas?

Ein Kandidat für den Posten des stellaren Geburtshelfers sind die Magnetfelder einer Galaxie. Jeder, der schon einmal das klassische Experiment gesehen hat, in dem ein Magnet unter eine Platte mit Eisenspänen gehalten wird, weiß, dass Magnetfelder der Materie eine Ordnung aufprägen können. Einige Forscher haben argumentiert, dass etwas Ähnliches bei den Molekülwolken passiert: dass die Magnetfelder einer Galaxie die Kondensation von interstellarer Materie lenken und ihnen eine Ordnung aufprägen, welche die Bildung dichterer Wolken und den weiteren Kollaps begünstigt.

Einige Astronomen sehen dies als Schlüssel zur Vorbereitung der Sternentstehung. Andere halten dagegen, dass der Gravitationseinfluss der Wolkenmaterie und turbulente Gasbewegungen im Wolkeninneren so stark sind, dass der Einfluss äußerer Magnetfelder keine wesentliche Rolle spielen sollte.

In unserer eigenen Galaxie können wir nur schwer überprüfen, welche der beiden Fraktionen richtig liegt. Wir sind mit unseren Sonnensystem im Inneren der galaktischen Scheibe der Milchstraße gefangen; die nötigen Beobachtungen gelingen aber am besten, wenn man von oben auf die Scheibe blicken kann. Daher wählten Hua-bai Li und Thomas Henning vom Max-Planck-Institut für Astronomie ein anderes Beobachtungsziel: Die Galaxie M33, auch als Dreiecksnebel bekannt, für kosmische Verhältnisse mit 3 Millionen Lichtjahren Entfernung einer unserer nächsten galaktischen Nachbarn. Bei dieser Galaxie blickt der irdische Beobachter direkt von oben auf die Scheibe (vgl. Abb. 1).

Mit Hilfe des Submillimeter Array (SMA), einem Verbundteleskop am Mauna Kea Observatory auf der gleichnamigen Insel Hawaiis, untersuchten Li und Henning spezifische Eigenschaften des Lichts, das uns von M 33 erreicht – Eigenschaften, die mit der Orientierung der Magnetfelder in der beobachteten Region zusammenhängen. Sie fanden, dass die Magnetfelder der sechs massereichsten Riesen-Molekülwolken der Galaxie mitnichten chaotisch-turbulent sind, sondern direkt dem Verlauf der Spiralarme folgen.

Würde die Turbulenz in diesen Wolken die dominante Rolle spielen, würde man im Gegensatz dazu erwarten, dass die Magnetfelder in der Wolke ungeordnet und zufällig durcheinander laufen.

Die Beobachtungen von Li und Henning sind damit ein deutlicher Hinweis, dass Magnetfelder in der Tat eine wichtige Rolle bei der Entstehung dichter Molekülwolken spielen dürften – und damit den Boden bereiten für die Entstehung von Sternen und Planetensystemen wie unserem eigenen.

Kontakt

Hua-bai Li (Erstautor)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 459
E-Mail: li@mpia.de
Thomas Henning (Co-Autor)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 200
E-Mail: henning@mpia.de
Markus Pössel (public relations)
Max-Planck-Institut für Astronomie, Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de
Hintergrundinformationen
Die hier beschriebenen Ergebnisse erscheinen am 24. November 2011 als H. Li & T. Henning, »The alignment of molecular cloud magnetic fields with the spiral arms in M33«, in der Zeitschrift Nature. Die Online-Version erscheint am 16. November.

Das Forschungsprojekt wurde unterstützt vom Max-Planck-Institut für Astronomie und vom Harvard-Smithsonian Center for Astrophysics. Das Submillimeter Array ist ein Gemeinschaftsprojekt des Smithsonian Astrophysical Observatory und des Academia Sinica Institute of Astronomy and Astrophysics. Es wird durch die Smithsonian Institution und die Academia Sinica finanziert.

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2011/PR111116/PR_111116_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf

Zum ersten Mal hat eine internationale Forschungsgruppe den Kernmechanismus aufgedeckt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt - dem Schlüsselmaterial für blaue Leuchtdioden (LED). Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu...

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Enzym mit überraschender Doppelfunktion

24.01.2018 | Biowissenschaften Chemie

Neuartiger hoch-produktiver Prozess für robuste Schichten auf flexiblen Materialien

24.01.2018 | Messenachrichten

Neuartiger Sensor zum Messen der elektrischen Feldstärke

24.01.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics