Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfeld von Wendelstein 7-X auf ein Hunderttausendstel genau

30.11.2016

Auswertung der Magnetfeldmessung / Zusammenfassung in „Nature Communications“

Die gewünschte Gestalt des magnetischen Feldes der Fusionsanlage Wendelstein 7-X wurde auf ein Hunderttausendstel genau realisiert. Diese Auswertung der ersten physikalischen Ergebnisse mit der neuen Maschine – erzielt, noch bevor Wendelstein 7-X im Dezember 2015 im Max-Planck-Institut für Plasmaphysik in Greifswald in Betrieb ging – ist heute in der Online-Zeitschrift „Nature Communications“ erschienen: http://dx.doi.org/10.1038/NCOMMS13493.


Der Fluoreszenzstab macht geschlossene, ineinander liegende magnetische Flächen sichtbar – der Magnetfeldkäfig für das Plasma ist so wie er sein soll.

Foto: IPP, Matthias Otte

Erläutert wird der wissenschaftliche Weg hin zu der komplexen, für guten Einschluss des Plasmas maßgeschneiderten Feldstruktur von Wendelstein 7-X. Wie exakt dieses gewünschte Feld – aufgebaut aus geschlossenen, ineinander geschachtelten magnetischen Flächen – von den speziell geformten, supraleitenden Stellarator-Spulen erzeugt werden kann, ist jetzt klar:

Die Abweichungen von der berechneten Soll-Form sind geringer als ein Hundertstel Promille: Folgt man einer Magnetfeldlinie über eine Länge von 100 Metern, also etwa über die Länge eines Fußballfeldes, dann trifft sie ihr Ziel auf einen Millimeter genau.

Nachgewiesen wurde dies mit einem hochempfindlichen Messverfahren: Dazu wurde ein dünner Elektronenstrahl in das leergepumpte Plasmagefäß eingeschossen, der sich entlang einer Feldlinie in Ringbahnen durch das Gefäß bewegt.

Schwenkt man einen fluoreszierenden Stab durch den Gefäßquerschnitt, entstehen Leuchtflecke, wenn der Elektronenstrahl den Stab trifft. In der Kameraaufzeichnung wird so nach und nach die Struktur des magnetischen Feldes sichtbar – die erwarteten ineinander geschachtelten elliptischen Flächen.

Mit dem Nachweis exakter magnetischer Flächen ist das erste Ziel von Wendelstein 7-X erreicht. Viele Fragen muss das Wendelstein-Team jedoch noch beantworten, bis klar ist, ob der Stellarator das richtige Konzept für die Fusion ist. „Die Arbeit daran“, so die Autoren, „hat gerade begonnen“.

Anmerkung: Den Text finden Sie auch im Internet unter http://www.ipp.mpg.de/4141568/w7x_nature

Das Foto und weitere Infos erhalten Sie unter info@ipp.mpg.de oder Tel. 089-3299-2607

Isabella Milch

Max-Planck-Institut für Plasmaphysik (IPP)
Leiterin Presse- und Öffentlichkeitsarbeit
Boltzmannstraße 2
D-85748 Garching
Tel. 089-3299-1317
Fax 089-3299-2622
http://www.ipp.mpg.de

IPP-Newsletter "Energie-Perspektiven"
http://www.energie-perspektiven.de

Aktuelles mit dem RSS-Feed des IPP:
http://www.ipp.mpg.de/feeds/pressemeldungen.rss

https://www.facebook.com/MaxPlanckInstitutFuerPlasmaphysik
https://twitter.com/PlasmaphysikIPP

Isabella Milch | Max-Planck-Institut für Plasmaphysik (IPP)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie