Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetfeld bremst Stern ab

12.06.2012
Wissenschaftler haben in Theorie und Laborexperiment einen magnetischen Effekt nachgewiesen, der erklären könnte, warum einst sonnenähnliche Sterne sich am Ende ihres Lebens viel langsamer um die eigene Achse drehen als erwartet.

Die Forscher des Leibniz-Instituts für Astrophysik Potsdam (AIP) haben das Magnetfeld der Sterne zunächst im Computer simuliert und dann mit Ergebnissen eines speziellen Experimentalaufbaus verglichen, der im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) realisiert worden ist.


Numerische Simulationen zeigen eine starke Verzerrung des Magnetfeldes im Inneren eines Sterns ab einer kritischen Magnetfeldstärke. Credits: AIP

Ziel und Erfolg des Experiments war es nachzuweisen, dass ab einer kritischen Magnetfeldstärke eine theoretisch bekannte und vorhergesagte Instabilität des Magnetfeldes tatsächlich auftritt. Dieser magnetische Effekt kann das Plasma im Inneren eines Sterns zähflüssiger machen und dadurch seine Rotationsgeschwindigkeit stärker verringern.

„Theoretisch haben wir die Tayler-Instabilität von Magnetfeldern schon seit Jahren als möglichen Mechanismus für das Abbremsen von Sternen in Betracht gezogen, nur war ihre tatsächliche Existenz bisher völlig unbewiesen. Nun ist sie sicher!“, sagt Günther Rüdiger, der Verantwortliche des Projekts auf Potsdamer Seite.„Unsere Berechnungen wurden durch das Experiment in hervorragender Weise bestätigt!“ freut sich auch Marcus Gellert, der mit Computer-Simulationen das Experiment vorbereitet hat.

Geht man von einem Stern aus, dessen Kern sich ähnlich schnell um die eigene Achse dreht wie der unserer Sonne, so muss sich dieser im Laufe seiner Entwicklung auf etwa zehn Prozent des Anfangswertes verlangsamen, damit die tatsächlich beobachteten, weit geringeren Rotationsgeschwindigkeiten eines Sterns im Endstadium als Weißer Zwerg (10 km/s) oder Neutronenstern erreicht werden. Eine andauernde magnetische Instabilität böte den effektivsten Abbremsungsmechanismus und damit ein plausibles Erklärungsmodell für solch eine enorme Verlangsamung. Ob und wie kontinuierlich die Instabilität nicht nur im Labor sondern auch im Inneren der Sterne wirkt, werden zukünftige Beobachtungen und verbesserte Simulationen zeigen. Der jetzt erfolgte experimentelle Nachweis der Instabilität könnte damit ein wichtiges Detail in der Theorie der Sternentwicklung erschließen.

Nach dem im Jahr 2010 mit dem Preis „Wissenschaft und Gesellschaft“ des Stifterverbandes für die deutsche Wissenschaft ausgezeichneten „PROMISE“-Experiment zur magnetischen Scherinstabilität, ist dies bereits das zweite Mal, dass die Potsdamer Wissenschaftler zusammen mit dem Team vom HZDR die Physik der Sterne erfolgreich ins Labor geholt haben.

Das Leibniz-Institut für Astrophysik Potsdam (AIP) beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung bürgerlichen Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 86 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Wissenschaftlicher Kontakt:
Prof. Dr. G. Rüdiger, Dr. M. Gellert, Leibniz-Institut für Astrophysik Potsdam (AIP), E- Mail: gruediger@aip.de, mgellert@aip.de, Tel. : 0331-7499 530

Presse-Kontakt:
Dr. Gabriele Schönherr / Kerstin Mork, E-Mail: presse@aip.de, Tel.: 0331-7499469
Weitere Informationen:

http://arxiv.org/abs/1201.2318
Rüdiger G., Gellert M., Schultz M., Strassmeier K.G., Stefani F., Gundrum Th., Seilmayer M., Gerbeth G.: Critical fields and growth rates of the Tayler instability as probed by a columnar gallium experiment

http://prl.aps.org/abstract/PRL/v108/i24/e244501
Martin Seilmayer, Frank Stefani u.a.: Evidence for transient Tayler instability in a liquid metal experiment, in: Physical Review Letters

Kerstin Mork | Leibniz-Institut für Astrophysik
Weitere Informationen:
http://www.aip.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

nachricht Neue Erscheinungsform magnetischer Monopole entdeckt
08.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie