Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnesium simuliert Magnete

21.11.2008
Garchinger Physiker nehmen einen Quantensimulator in Betrieb und zeigen mit ihren Experimenten auch eine Route zum Quantencomputer auf

Atome sind unberechenbar - zumindest wenn sie in größeren Gruppen auftreten. Schon das Zusammenspiel von 30 Atomen kann ein gewöhnlicher Computer nicht korrekt beschreiben, weil quantenmechanische Effekte auftreten. Quantensimulatoren könnten Physikern da helfen, um mehr über ungeklärte Phänomene wie bestimmte Formen des Magnetismus oder die Hochtemperatur-Supraleitung herauszufinden. Forscher des Max-Planck-Instituts für Quantenoptik in Garching haben jetzt die einfache Version eines solchen Instruments aus zwei Magnesium-Ionen konstruiert. Damit imitieren sie das Verhalten eines zweiatomigen Quantenmagneten und belegen, dass solche Simulationen prinzipiell möglich sind. (Nature Physics, Oktober 2008)

Nach den ersten Spielen der Fußball-Europameisterschaft hätte mancher mit einen Turniersieg der Niederlande oder Portugals gerechnet - die kurz darauf aber glanzlos aus dem Turnier flogen. Genauso wenig wie selbst Franz Beckenbauer und Günter Netzer das Zusammenspiel von 22 Fußballern vorhersagen können, sind Physiker in der Lage, das quantenphysikalische Verhalten von Atom in größeren Gruppen zu prognostizieren. Doch sie haben einen Vorteil: Sie können die Vorgänge in der Quantenwelt simulieren.

So möchten Wissenschaftler Phänomene wie Magnetismus, quantenkritische Übergänge oder die Hochtemperatur-Supraleitung nachahmen. Gewöhnliche Computer stoßen hierbei jedoch schnell an fundamentale Grenzen. Derzeit liegt ihre Kapazitätsgrenze ungefähr bei 30 Quantenteilchen, und selbst die besten Computer der Zukunft werden wahrscheinlich höchstens mit 40 Teilchen fertig. Als leistungsfähigere Alternative entwickeln Physiker daher Quantensimulatoren.

Physiker um Tobias Schätz, der am Max-Planck-Institut für Quantenoptik eine Nachwuchsgruppe leitet, haben jetzt einen Quantensimulator gebaut, mit dem sie unter anderem magnetische Phänomene oder die Hochtemperatur-Supraleitung untersuchen können. Sie bedienen sich dabei eines Quantensystems, das sie sehr genau kennen und kontrollieren können.

Mit diesem Simulator wollen sie zunächst Quantenmagnete nachahmen, deren Verhalten sie noch nicht vollkommen verstehen. In einem ersten Experiment haben die Forscher mit dem Instrument einen zweiatomigen Quantenmagneten imitiert, dessen Verhalten sie schon mit gewöhnlichen Computern vorhergesagt hatten. Da der Quantensimulator diese Vorhersagen bestätigte, war damit bewiesen, dass er sich für solche Untersuchungen grundsätzlich eignet. Künftig wollen die Wissenschaftler das neue Gerät so erweitern, dass sie mit ihm mehr als zwei Teilchen untersuchen können.

Ein Quantensimulator teilt wesentliche Eigenschaften mit dem System, das er imitiert - und bietet sich daher für die Untersuchung solcher Systeme an. "Außerdem können wir damit gezielt testen, wie sich ein System verhält, wenn wir nur eine seiner Eigenschaften ändern und alle anderen beibehalten", sagt Tobias Schätz.

"Die Möglichkeit, mit einem Quantensimulator einzelne Eigenschaften gezielt zu steuern, könnte in Zukunft etwa helfen, das Phänomen der Hochtemperatur-Supraleitung zu verstehen und so gezielt Materialien herzustellen, die Strom sogar bei Temperaturen von über 40 Grad Celsius ohne Widerstand leiten." Die Temperatur, bei der ein Hochtemperatursupraleiter seinen Widerstand aufgibt, heißt Sprungtemperatur und hängt unter anderem vom Abstand zwischen den Atomen in einem Festkörper ab - der seinerseits von dessen chemischen Zusammensetzung abhängt. Die chemische Zusammensetzung beeinflusst jedoch auch viele andere Eigenschaften, die sich auf die Supraleitung auswirken. "Wenn man also die Zusammensetzung von Hochtemperatur-Supraleitern ändert, weiß man nicht, ob der unterschiedliche Atomabstand oder eine andere Veränderung in den Eigenschaften die Sprungtemperatur verschiebt - oder ob sich nicht gerade ein positiver und negativer Effekt gegenseitig aufheben", sagt Schätz.

Bis Physiker mit Quantensimulatoren tatsächlich die Hochtemperatur-Supraleitung erforschen können, wir noch einige Zeit vergehen. Zunächst haben die Garchinger Physiker simuliert, wie sich die magnetische Ordnung in einem zweiatomigen Quantenmagneten ändert, wenn die beiden Atome nicht mehr unabhängig voneinander sind, sondern miteinander in Verbindung treten.

In einem magnetischen Material wie Eisen verhalten sich einzelne Elektronen wie kleine Kompassnadeln oder Stabmagnete mit Nord- und Südpol. In einem Permanentmagneten wie einem Hufeisenmagneten sind diese winzigen Stabmagnete alle gleich ausgerichtet - Physiker sprechen von einem ferromagnetischen Zustand - und können mit ihrer geballten Kraft auch ein Stück Eisen magnetisieren und anziehen.

In einem Quantenmagneten ist die Situation so uneindeutig wie oft in der Quantenphysik. In ihm richten sich die Kompassnadeln, also die Elementarmagnete, erst aus, sobald jemand ihre Orientierung bestimmen möchte. Vorher zeigt die Kompassnadel in zwei Richtungen gleichzeitig nach oben wie unten. Schon in einem Quantenmagneten aus zwei Atomen, wie ihn Tobias Schätz und seine Mitarbeiter untersucht haben, wird die Situation noch komplizierter - zumal, wenn die beiden Magnete miteinander wechselwirken, also miteinander in Verbindung treten. Dann richten beide Elementarmagnete ihre Nordpole am liebsten in die gleiche Richtung aus, weil dies am wenigsten Energie kostet.

Nur: Welche Richtung ist gemeint, wenn jeder einzelne Elementarmagnet gleichzeitig zwei Orientierungen besitzt? Das bleibt unentschieden, solange niemand den Magneten untersucht. Bis dahin zeigen die Kompassnadeln gleichzeitig nach oben und unten und legen sich erst im Moment einer Messung auf eine Richtung fest. Dann reicht es aber, wenn ein Physiker eines der Atome durch eine Messung zwingt, seine Orientierung festzulegen. Dann richtet sich das magnetische Moment des anderen Atoms im selben Moment genauso aus. Das ist einem weiteren mysteriösen Phänomen, der Verschränkung, zu verdanken.

Tobias Schätz und seine Mitarbeiter haben nun simuliert, wie der Quantenmagnet vom paramagnetischen in den ferromagnetischen Zustand wechselt. Im paramagnetischen Zustand wissen die beiden Elementarmagnete nichts voneinander und richten sich nach einem äußeren Magnetfeld aus. Nun haben die Garchinger Physiker simuliert, dass die Wechselwirkung zwischen beiden Elementarmagneten allmählich zunimmt. Damit steigt langsam auch die Wahrscheinlichkeit, dass sich die beiden Stabmagneten ferromagnetisch ausrichten, also die Nordpole beider gleichzeitig nach unten und oben zeigen.

Wie sich die Atome in einem Quantenmagneten verhalten, haben die Physiker bereits mit einem Computer simuliert. "Deshalb konnten wir prüfen, ob unser Simulator funktioniert", sagt Tobias Schätz. Und das tut er: Die Physiker haben zwei Magnesiumionen zwischen mehreren Elektroden gefangen, die die elektrisch geladenen Teilchen mit elektrischen Kräften festhalten. Zwei energetische Niveaus des Magnesiums, zwischen denen Elektronen hin und her hüpfen, simulieren die beiden magnetischen Orientierungen. Das äußere Magnetfeld wird von Radiowellen imitiert. Sie befördern ein Elektron von einem zum anderen Niveau. Die Radiowellen strahlen die Physiker gerade halb so lange ein, wie es nötig wäre, um eine Kompassnadel von Nord auf Süd zu drehen. Damit erreichen sie einen Überlagerungszustand, in dem jede Kompassnadel gleichzeitig in beide Richtungen weist - was in der klassischen Physik nicht nachvollziehbar ist.

Die Kopplung zwischen den beiden Atomen, die deren ferromagnetische Anordnung zum energetisch günstigsten Zustand bewirkt, simulieren die Wissenschaftler mit einem Laser. Dessen elektromagnetisches Feld greift die Atome und verschiebt sie. Allerdings liegt die Energie des Laserlichts genau zwischen den beiden elektronischen Niveaus der Magnesium-Ionen. Das führt zu einem Phänomen, das sich in ähnlicher Form auch an einem pendelnden Telefonhörer beobachten lässt: Wackelt man langsam mit dem Kabel, pendelt der Hörer im Gleichtakt; bewegt man die Hand dagegen zu schnell, schwingt der Hörer entgegen der Handbewegung.

Nach demselben Prinzip schiebt der Laser der Garchinger Physiker Magnesiumionen, deren Elektronen auf dem höheren elektronischen Niveau sitzen, in die Richtung, in die er selbst läuft. Magnesiumionen, deren Elektronen weniger Energie besitzen, zieht der Laserstrahl dagegen genau in entgegengesetzte Richtung. Entscheidend ist nun, dass es weniger Energie kostet, wenn beide Ionen in die gleiche Richtung wandern. Wenn sie sich also beide im selben elektronischen Zustand befinden. Entsprechendes beobachten die Garchinger Physiker: Die Wahrscheinlichkeit, mit der ihr Laser beide Ionen in dieselbe Richtung schiebt, steigt mit der Intensität des Lasers, also mit der Stärke der Kopplung.

Damit gibt der Simulator genau wieder, was in einem zweiatomigen Quantenmagneten passiert: Je stärker die magnetische Kopplung zwischen beiden Atomen ist, desto eher nehmen sie einen ferromagnetischen Zustand an. Das heißt nun aber, dass beide Kompassnadeln verschränkt in die gleiche Richtung zeigen - also beide gleichzeitig nach Norden wie nach Süden. Diese von Einstein als spukhaft beschriebene Verschränkung haben die Forscher damit eindeutig nachgewiesen.

"Jetzt wollen wir unseren Simulator langsam ausbauen", sagt Tobias Schätz: "Schon mit einem Simulator für einen Quantenmagneten aus drei Atomen in dreieckiger Anordnung, lässt sich interessante Physik machen." Indem sie ihren Simulator geschickt einstellen, können er und seine Mitarbeiter nämlich den antiferromagnetischen Zustand simulieren: Dabei orientieren sich die Elementarmagnete genau entgegengesetzt - Nord- und Südpole wechseln sich ab. Wie richten sich dann aber die Elementarmagnete in einem dreieckigen Quantenmagneten aus? "Man spricht dann von einer Spinfrustration", erklärt Schätz: "Und solche Spinfrustrationen spielen möglicherweise auch bei der Hochtemperatur-Supraleitung eine Rolle."

[PH]

Originalveröffentlichung:

Axel Friedenauer, Hector Schmitz, Jan T. Glückert, Diego Porras und Tobias Schätz
Simulating a quantum magnet with trapped ions
Nature Physics, Oktober 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten