Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das MAGIC-II Teleskop ist startklar

15.04.2009
Mit einer Spiegelgröße von 247 Quadratmetern nimmt das zweite MAGIC-Teleskop auf La Palma seinen wissenschaftlichen Betrieb auf.

Zusammen mit dem MAGIC I-Teleskop bietet das weltweit größte Gammastrahlenteleskop nun neue astrophysikalische Forschungsmöglichkeiten. Die Untersuchung von Beschleunigungsmechanismen für Elementarteilchen in galaktischen und extragalaktischen Objekten beispielsweise erlaubt neue fundamentale Einsichten in die Geschichte von gewaltigen Strahlungsvorgängen im Universum.

Mit der "First Light Zeremonie" stellt die MAGIC-Kollaboration am 24. und 25. April offiziell ihr zweites MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) Teleskop auf der Kanareninsel La Palma der Öffentlichkeit vor. Dieses Ereignis markiert nicht nur die Fertigstellung des zweiten Teleskops, sondern auch den Start der zweiten Phase des Experiments - MAGIC-II.

Mit MAGIC-II wollen die Wissenschaftler neue galaktische und extragalaktische Quellen hochenergetischer Gammastrahlung entdecken. Diese Strahlung stammt von den gewaltigsten Prozessen im Universum, wie Sternexplosionen, Pulsarwind-Nebeln und aktiven Galaxienkernen. Die hervorragenden atmosphärischen Bedingungen auf dem 2200 Meter hoch gelegenen Roque-de-los-Muchachos-Observatorium erlauben den MAGIC-Teleskopen, die hochenergetische Gammastrahlung durch Cherenkov-Lichtblitze zu messen. Dieses bläuliche Licht wird von Sekundärteilchen ausgestrahlt, welche durch die ursprünglichen Gammastrahlen in der Atmosphäre erzeugt werden. Mit ihren beiden, im Durchmesser je 17 Metern großen, Spiegelflächen sind die MAGIC-Teleskope die größten Cherenkov-Teleskope der Welt.

Das 2004 in Betrieb genommene erste MAGIC-Teleskop kann bereits eine Reihe herausragender Resultate vorzeigen, insbesondere die Entdeckung der beiden weitentferntesten aktiven Galaxienkerne im Gammalicht sowie Untersuchungen der weithin unverstandenen Gammastrahlungsblitze. Zudem konnte MAGIC vor kurzem erstmals gepulste hochenergetische Gammastrahlung vom Krebsnebel nachweisen.

Um die Gammastrahlung mit einer noch höheren Empfindlichkeit zu messen, begann die MAGIC-Kollaboration bereits 2005 mit der Konstruktion von MAGIC-II. Das zweite MAGIC-Teleskop entspricht weitestgehend dem ersten Teleskop mit einem mosaikartigen, 247 Quadratmeter großen Spiegel. Dieser wird getragen von einer besonders leichten und widerstandsfähigen Kohlefaserstruktur. Dank eines leistungsfähigen Antriebssystems kann das Teleskop innerhalb von 40 Sekunden jeden Punkt am Himmel anvisieren, um die mysteriösen kurzen Gammastrahlungsblitze ("Gamma Ray Bursts") zu untersuchen. 85 Meter voneinander entfernt können beide Teleskope stereoskopisch betrieben werden, d. h. die Gammastrahlungsblitze räumlich beobachten.

Die Wissenschaftler hoffen nun, viele neue und unverstandene Gammastrahlungs-Quellen zu entdecken. Abgesehen von den Untersuchungen der Gammaquellen selbst können sie auch zum tieferen Verständnis des gesamten Universums und grundlegender Physik beitragen, indem sie beispielsweise zur Suche nach dunkler Materie oder zu neuen Erkenntnissen über Quanteneffekte der Gravitation verhelfen. Erste Resultate von MAGIC-II werden voraussichtlich bereits im Frühsommer 2009 vorliegen.

Eine große internationale Kollaboration baute und betreibt die MAGIC-Teleskope. Momentan besteht dieser Zusammenschluss aus etwa 150 Wissenschaftlern aus Instituten aus Deutschland, Italien, Spanien, der Schweiz, Polen, Finnland, Kroatien, Bulgarien und den USA, welche sich auch die geschätzten vier Millionen Euro Baukosten des zweiten Teleskops geteilt haben. Das Max-Planck-Institut für Physik in München nimmt innerhalb von MAGIC eine führende Rolle ein. Aus Deutschland sind weiterhin die Universitäten Würzburg und Dortmund sowie das Deutsche Elektronen-Synchrotron (DESY) Zeuthen beteiligt.

Die First Light Zeremonie von MAGIC-II auf La Palma wird ein wissenschaftliches Seminar am 24. April 2009 zum MAGIC-Projekt beinhalten. Die eigentliche Zeremonie wird am 25. April 2009 auf dem MAGIC-Gelände stattfinden.

Das Max-Planck-Institut für Physik veranstaltet eine Pressereise und bietet zur redaktionellen Berichterstattung im Fernsehen Footage-Material auf Digi-Beta-Kassetten und DVDs an. Weitere Informationen erhalten Sie direkt bei Silke Zollinger, silke.zollinger@mpp.mpg.de

Weitere Informationen erhalten Sie von:

Dr. Masahiro Teshima (Sprecher der MAGIC-Kollaboration)
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-301
E-Mail: masahiro.teshima@mpp.mpg.de
Dr. Razmik Mirzoyan (Leader of MPI MAGIC Group)
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-328
E-Mail: razmik.mirzoyan@mpp.mpg.de
Dr. Thomas Schweizer (Technischer Koordinator der MAGIC-Kollaboration)
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-227
E-Mail: tschweiz@mpp.mpg.de
Silke Zollinger, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Tel.: +49 89 32354-292
Fax: +49 89 3226-704
E-Mail: silke.zollinger@mpp.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpp.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics