Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MADMAX: Max-Planck-Institut für Physik steigt in Axionforschung ein

18.11.2016

Das Max-Planck-Institut für Physik (MPP) erschließt ein neues Forschungsfeld. Mit einem Workshop vom 21. - 22. November 2017 beginnen die Aktivitäten für ein innovatives Axion-Experiment. Axionen sind bislang rein hypothetische Teilchen. Der Nachweis von Axionen könnte zwei grundlegende Probleme in der Teilchenphysik lösen: Woraus Dunkle Materie besteht und warum die CP-Verletzung bei der starken Wechselwirkung bisher nicht direkt beobachtet werden konnte.

Mit dem "MADMAX" genannten Vorhaben engagiert sich das MPP in der Axion-Forschung. Die bislang nur theoretisch vorhergesagten Axionen sind schwer zu fassen: Zum einen sind sie ungefähr 10 Milliarden Mal leichter als Elektronen. Zum anderen wechselwirken sie nur extrem schwach mit anderen Materieteilchen und hinterlassen daher kaum Spuren.


Testaufbau des Experiments mit Sapphirplatten. Künftig sollen 80 Scheiben aus Lanthanalaluminat den Nachweis der Axion-Photon-Umwandlung ermöglichen.

B. Wankerl/MPP


Testaufbau für die Axion-Photon-Umwandlung am Max-Planck-Institut für Physik

B. Wankerl/MPP

In einem sehr starken Magnetfeld könnten Axionen mit Lichtteilchen (Photonen) reagieren und damit nachweisbar gemacht werden. Auf dieser Grundannahme basiert das neue Detektorkonzept, das Wissenschaftler am MPP gemeinsam mit anderen Forschungseinrichtungen entwickeln und testen wollen. Das Kick-off-Meeting findet am 21. und 22. November am MPP statt.

Fokus auf Axionen, die nach der Inflation entstanden sind

Für die Entstehung von Axionen gibt es zwei wohl motivierte Szenarien: Die Teilchen könnten sich noch vor der Inflation, der rasanten Ausdehnung des Universums nach dem Urknall gebildet haben. Ein zweites Szenario setzt die "Geburt" der Axionen nach der Inflation an.

Das geplante Experiment fokussiert sich auf Nachweis von Axionen des nach-inflationären Szenarios. Die Masse dieser Axionen taxieren die Wissenschaftler auf 40 bis 400 Mikroelektronenvolt. Diese Annahme wird auch von einer kürzlich in Nature veröffentlichten Studie gestützt. Die Wellenlänge der Photonen liegt für diesen Fall im Mikrowellenbereich des elektromagnetischen Spektrums, ihre Frequenz bei 10 bis 100 Gigahertz.

Die Umwandlung von Axionen in Photonen ist ein seltener Vorgang; zudem muss sich die Axion-Photon-Ausbeute zuverlässig von anderen Lichtteilchen im elektromagnetischen Spektrum unterscheiden lassen.

Das Experiment ist dreiteilig angelegt und besteht aus

- einem röhrenförmigen, 10 Tesla starken Magneten, in dessen Feld die Axion-Photonen Reaktion stattfinden soll,
- einem Modul mit 80 halbtransparenten Scheiben aus Lanthanalaluminat –Durchmesser bis zu 1 Meter – in dem Photonen erzeugt, „konstruktiv“ überlagert und damit leichter messbar werden,
- einem Detektor zum Nachweis der Photonen.

Nachweis von einem Photon pro Sekunde

In diesem System könnten an den Oberflächen der Scheiben Axionen in Photonen verwandelt werden. Diese überlagern sich bei richtigem Plattenabstand zu einem stärkeren Signal; zugleich können die Photonen das System ungehindert in Richtung Detektor verlassen.

Auf diese Weise, so die Hoffnung der Physiker, könnte sich ein Photon pro Sekunde mit genau definierter Wellenlänge erzeugen lassen. Um den gesamten Massebereich zwischen 40 und 100 Mikroelektronenvolt zu vermessen, müsste man dann allerdings mehrere Jahre veranschlagen.

Als eigentliches Nachweisgerät soll ein Instrument zum Einsatz kommen, das ähnlich aufgebaut ist wie ein Radioteleskop, allerdings um ein Vielfaches kleiner. Der mit flüssigem Helium auf circa -270 Grad Celsius gekühlte Detektor empfängt das eintreffende Mikrowellensignal, das verstärkt und dann aufgezeichnet wird.

Für den Bau und die Inbetriebnahme des Magneten wird das MPP eine Designstudie in Auftrag gegen. Mit ersten Ergebnissen rechnen die MPP-Wissenschaftler Mitte 2018.

Kontakt:
Dr. Béla Majorovits
Max-Planck-Institut für Physik
Tel.: +49 89 32354-262
E-Mail: bela@mpp.mpg.de

Weitere Informationen:

https://www.mpp.mpg.de/aktuelles/meldungen/detail/madmax-max-planck-institut-fue...

Barbara Wankerl | Max-Planck-Institut für Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Alternder Stern bläst Materie von sich
21.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie