Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unter die Lupe genommen: Der Toby-Jug-Nebel

09.10.2013
Das Very Large Telescope (VLT) der ESO hat ein außergewöhnlich detailliertes Bild vom sogenannten Toby-Jug-Nebel aufgenommen, einer Gas- und Staubwolke um einen Roten Riesenstern.

Diese Ansicht zeigt die charakteristische Bogenstruktur des Nebels, der tatsächlich einem Krug mit einem Henkel ähnelt. Die primär im angelsächsischen Kulturkreis anzutreffenden Toby-Jugs oder Toby-Krüge in Gestalt einer Person dienten früher dem Ausschank von Bier und sind heute beliebte Sammelobjekte.


Aufnahme des Toby-Jug-Nebels vom Very Large Telescope der ESO
Bild: ESO

Der Toby-Jug-Nebel, der offiziell als IC 2220 bekannt ist, befindet sich etwa 1200 Lichtjahre von der Erde entfernt im südlichen Sternbild Carina (der Schiffskiel) und ist ein schönes Beispiel für einen Reflexionsnebel. Dabei handelt es sich um eine Wolke aus Gas und Staub, die von innen heraus durch einen Stern beleuchtet wird. Im Falle von IC 2220 ist das der Stern HD 65750. Er gehört zum Typ der Roten Riesen und besitzt die fünffache Masse unserer Sonne. Obwohl er mit seinen 50 Millionen Jahren vergleichsweise jung ist, befindet er sich in einem deutlich fortgeschrittenem Stadium seines Lebens [1].

Der Nebel selber wurde von dem Stern geschaffen, da er kontinuierlich einen Teil seiner Masse an die Umgebung verliert. Dabei entsteht eine Wolke aus Gas und Staub, sobald das Material sich abkühlt. Der Staub besteht aus Elementen wie Kohlenstoff und einfachen, hitzeresistenten Bestandteilen wie Titandioxid und Kalziumoxid (Kalk). In diesem Fall haben detaillierte Untersuchungen des Objekts im Infrarotlicht gezeigt, dass Siliziumdioxid (Quarz) wohl der Bestandteil ist, der am wahrscheinlichsten für die Reflexion des Sternlichts verantwortlich ist.

IC 2220 ist nur sichtbar, weil das Licht des Sterns von den Staubkörnern reflektiert wird. Der kosmische Schmetterling ist nahezu symmetrisch und hat einen Durchmesser von etwa einem Lichtjahr. Diese Phase im Leben eines Sterns ist kurz, daher sind Objekte dieser Art selten.

Rote Riesen entstehen aus alternden Sternen, die sich der letzten Stufe ihrer Entwicklung nähern. Sie haben ihren Vorrat an Wasserstoff, der die Kernreaktionen befeuert, die die meiste Zeit ihres Lebens im Inneren des Sterns ablaufen, fast verbraucht. Dies führt zu einer enormen Ausdehnung der Sternatmosphäre. Sterne wie HD 65750 besitzen über einem Kohlenstoff-Sauerstoff-Kern eine Schale, in der sie Helium fusionieren. Manchmal besitzen sie zusätzlich auch eine Schale näher an der Sternoberfläche, in noch Wasserstoffbrennen stattfindet.

In einigen Milliarden Jahren wird sich auch unserer Sonne zu einem solchen Roten Riesen aufblähen. Man erwartet, dass die Sonnenatmosphäre sich dann deutlich über die heutige Umlaufbahn der Erde hinaus aufbläht und so alle inneren Planeten verschlingt. Zu diesem Zeitpunkt wird sich die Erde schon im einem ziemlich schlechten Zustand befinden. Die ungeheure Zunahme an Strahlung und die starken Sonnenwinde, die das Aufblähen der Sonne begleiten werden, werden alles Leben auf der Erde zerstören und das Wasser in den Ozeanen verdampfen, bevor der gesamte Planet schließlich geschmolzen wird.

Die britischen Astronomen Paul Murdin, David Allen und David Malin gaben IC 2220 wegen seiner Ähnlichkeit zu einem alten englischen Trinkgefäß, das typischerweise als Toby-Krug (engl. Toby Jug) bezeichnet wird und den sie aus ihrer Jugend kannten, den Spitznamen Toby-Jug-Nebel.

Dieses Bild wurde im Rahmen des Cosmic Gems-Programm der ESO erstellt [2].

Endnoten

[1] Sterne mit einer höheren Masse durchlaufen ihr Leben viel schneller als massearme Sterne wie unsere Sonne, deren Lebensdauer in Milliarden anstatt in Millionen Jahren gemessen wird.

[2] Dieses Bild stammt aus dem Cosmic Gems-Programm (wörtlich „kosmische Edelsteine“), einer ESO-Initiative zur Erstellung von astronomischen Aufnahmen für Bildungs- und Öffentlichkeitsarbeit. Das Programm nutzt hauptsächlich Zeiten, während derer die Beobachtungsbedingungen nicht den strengen Ansprüchen wissenschaftlicher Beobachtungsarbeit genügt, um Bilder von interessanten, faszinierenden oder von Himmelsobjekten anzufertigen, die einfach schön anzusehen sind. Die Bilddaten sind anschließend im wissenschaftlichen Archiv der ESO für jedermann zugänglich. Auch professionelle Astronomen können sie für ihre Zwecke nutzen.

Zusatzinformationen

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner bei den neuartigen Teleskopverbund ALMA, dem größten astronomischen Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528226
E-Mail: eson-germany@eso.org
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Handy: +49 151 1537 3591
E-Mail: rhook@eso.org

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik