Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lücke im Standardmodell der Teilchenphysik?

14.07.2011
Aktuelle Ergebnisse aus dem Forschungszentrum Fermilab bei Chicago verstärken den Hinweis auf eine Lücke des Standardmodells der Teilchenphysik.

Eine Analyse der neuesten Daten des Experimentes DZero am Teilchenbeschleuniger Tevatron hat nun bestätigt, dass beim Zerfall des Teilchen B-Meson etwa ein Prozent mehr Myonen als ihre Antiteilchen, Antimyonen, entstehen.

Dieser Effekt ist etwa 50-Mal größer als erwartet. Der Karlsruher Theoretische Physiker Ulrich Nierste hat die zu erwartenden Zerfallsraten für das Experiment berechnet.

Warum gibt es das Universum, wie wir es kennen? Warum gibt es überhaupt Materie? Den Überschuss an Materie erklärt das etablierte Standardmodell nicht. An diesen Fragen forscht auch Professor Ulrich Nierste vom Institut für Theoretische Teilchenphysik des KIT. Die dem „DZero“-Experiment zugrunde liegende Arbeit von Nierste und Prof. Alexander Lenz, derzeit TU München, gibt – auf Basis des Standardmodells – eine präzise theoretische Vorhersage des erwarteten Verhältnisses der Zahl der Myonen zu der der Antimyonen.

„Das Standardmodell ist in unzähligen Experimenten in den letzten Jahrzehnten exzellent bestätigt worden“, sagt Ulrich Nierste. „Sollte die nun vorliegende Abweichung unabhängig bestätigt werden, wäre die Tür zu neuen Naturgesetzen aufgestoßen.“ Dann sei auch zu erwarten, dass der neue Teilchenbeschleuniger „Large Hadron Collider“ (LHC) am europäischen Forschungszentrum CERN neue Teilchen finden wird.

Die aktuelle Studie des Fermilab vergleicht die theoretische Vorhersage mit den tatsächlichen Daten aus Teilchenkollisionen am Teilchenbeschleuniger Tevatron.

Die Physiker stellen die Anzahl der Myonen und der Antimyonen einander gegenüber, die beim Zerfall von B-Mesonen entstehen. Dabei fanden sie heraus, dass es etwa ein Prozent mehr Myonen als Antimyonen gibt. Diese Abweichung ist 50-mal größer als vom Standardmodell der Elementarteilchen vorhergesagt wird.

Bei der aktuellen Studie handelt es sich um eine Aktualisierung der Analyse des letzten Jahres: Inzwischen konnten rund 50 Prozent mehr Daten analysiert und damit die Unsicherheit des Ergebnisses verringert werden. Die Chance, dass es sich bei dem Effekt um einen statistischen Zufall handelt, liegt nun bei etwa 0,005 Prozent und hat damit den Status eines starken Hinweises auf eine wissenschaftliche Entdeckung. Allerdings spricht man in der Wissenschaft erst bei 0,00003 Prozent und bei unabhängiger Bestätigung durch andere Experimente von einer echten Entdeckung. Ein neues Experiment am CERN (LHCb-Experiment) arbeitet mit Hochdruck an einer Messung des beobachteten Phänomens in einem anderen Zerfallskanal des B-Mesons.

Die gemessene Asymmetrie im Zerfall von B-Mesonen gibt den Physikern wertvolle Hinweise über die Richtung, in die sie das Standardmodell weiterentwickeln müssen. Ein schlüssiges Bild könnte sich ergeben, wenn man das Standardmodell zu einer supersymmetrischen vereinheitlichten Theorie weiterentwickelt. Derartige Theorien favorisieren Theoretiker weltweit; das Konzept der Supersymmetrie hatten Julius Wess und Bruon Zumino an der damaligen Universität Karlsruhe entwickelt.

Die aktuelle Publikation des Fermilabs befindet sich zurzeit im wissenschaftlichen Begutachtungsprozess. Im Internet ist sie unter http://arxiv.org/pdf/1106.6308 herunterzuladen.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Tu-Mai Pham-Huu
Presse, Kommunikation, Marketing
Tel.: +49 721 48157
Fax: +49 721 45681
E-Mail: tu-mai.pham-huu@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie