Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lösungen finden, wenn alles mit allem zusammenhängt

26.01.2016

Quantenobjekte kann man nicht einfach als Summe ihrer Einzelteile verstehen – das macht Quanten-Rechnungen oft extrem schwierig. An der TU Wien berechnet man nun Bose-Einstein-Kondensate, die ihre spannendsten Eigenschaften nur im Kollektiv preisgeben.

Quantensysteme kann man nur dann auf einfache Weise berechnen, wenn sie aus wenigen Einzelteilen bestehen. Ein Wasserstoffatom ist kein Problem – eine Atomwolke, die tausende Teilchen enthält, kann man normalerweise nur näherungsweise beschreiben.


Bose-Einstein-Kondensate, die Wellen schlagen: Ein Vielteilchen-Phänomen

TU Wien

Der Grund dafür ist, dass die Teilchen quantenphysikalisch miteinander verbunden sind und nicht einfach getrennt voneinander betrachtet werden können. Kaspar Sakmann vom Atominstitut der TU Wien zeigt nun gemeinsam mit Mark Kasevich (Stanford, USA) im Fachjournal „Nature Physics“, dass man mit bestimmten Methoden sogar Effekte in ultrakalten Bose-Einstein-Kondensate berechnen kann, die sich nur durch die quantenphysikalische Korrelation zwischen vielen Atomen erklären lassen.

Quantenphysikalische Verbindungen

Die Quantenphysik ist ein großes Zufallsspiel: Die Atome in einer Atomwolke haben zunächst keinen festgelegten Aufenthaltsort. Ähnlich wie ein Würfel noch keine Augenzahl anzeigt, so lange er noch in der Luft herumwirbelt, befinden sich die Atome zunächst überall gleichzeitig. Erst bei der Messung werden die Positionen der Atome festgelegt.

„Wir bestrahlen die Atomwolke mit Licht, das von den Atomen absorbiert wird“, erklärt Kaspar Sakmann. „Man fotografiert die Atome gewissermaßen und legt ihre Position damit fest. Das Ergebnis ist völlig zufällig.“

Allerdings unterscheidet sich dieser Quantenzufall vom Würfelspielen: Wenn man nämlich mit verschiedenen Würfeln gleichzeitig würfelt, kann man sie völlig getrennt voneinander betrachten. Ob man mit dem ersten Würfel eine Sechs würfelt, hat überhaupt keinen Einfluss darauf, welche Zahl beim Würfel Nummer sieben drankommen wird.

Die Atome in der Atomwolke sind hingegen quantenphysikalisch miteinander verbunden. Man kann sie nicht getrennt voneinander betrachten, sie sind ein gemeinsames Quantenobjekt. Daher hängt das Ergebnis jeder Atom-Aufenthaltsmessung auf mathematisch komplizierte Weise von den Aufenthaltsorten aller anderen Atome ab.

„Es ist nicht schwer, die Wahrscheinlichkeit zu ermitteln, dass man ein Teilchen an einem bestimmten Ort vorfinden wird“, sagt Kaspar Sakmann. „Im Zentrum der Wolke ist die Wahrscheinlichkeit am größten, nach außen hin nimmt sie stetig ab.“

Hätte man es mit einem klassischen Zufallssystem zu tun, dann wäre das schon alles: Wenn man weiß, dass mit einem einzelnen Würfel in einem Sechstel aller Fälle eine Eins würfeln wird, dann kann man problemlos die Wahrscheinlichkeit ausrechnen, mit drei Würfeln jeweils eine Eins zu würfeln.

Auch wenn man fünfmal die Eins würfelt, ist beim sechsten Würfel die Wahrscheinlichkeit für eine Eins wieder genauso groß wie immer – ein Sechstel. Bei quantenphysikalischen Teilchen ist das viel komplizierter.

„Wir teilen das Problem Schritt für Schritt auf“, erklärt Sakmann. „Wir berechnen zuerst die Wahrscheinlichkeit, mit der sich das erste Teilchen an einer bestimmten Stelle befindet. Die Aufenthaltswahrscheinlichkeiten des zweiten Teilchens hängen dann davon ab, wo man das erste gefunden hat, der Ort des dritten Teilchens von den ersten beiden – und immer so weiter.“

Um die Verteilung zu berechnen, die das letzte Teilchen beschreibt, muss man ausnahmslos alle anderen Teilchen berücksichtigen – diese Art von Quantenverschränkung macht das Problem mathematisch höchst kompliziert.

Ohne Korrelationen wäre das Experiment unerklärbar

Doch genau diese Art von höheren Korrelationen zwischen vielen Teilchen sind unverzichtbar – zum Beispiel um das Verhalten von kollidierenden Bose-Einstein-Kondensaten zu berechnen. „Aus dem Experiment weiß man, dass bei solchen Kollisionen spezielle Quantenwellen entstehen. An manchen Orten findet man viele Teilchen, gleich daneben überhaupt keine“, sagt Kaspar Sakmann.

„Betrachtet man die Atome des Bose-Einstein-Kondensats einzeln, dann ist dieser Effekt nicht zu erklären. Erst wenn man die vollständige, Quanten-Verteilungsfunktion mit höheren Korrelationen betrachtet, tauchen diese Wellen in der Rechnung auf.“

Berechnet wurden auch Bose-Einstein-Kondensate, die man mit einem Laserstrahl umrührt, woraufhin spontan an bestimmten Orten kleine Vortices entstehen – auch ein typischer Vielteilcheneffekt. „Unsere Ergebnisse zeigen, wie wichtig diese Korrelationen sind, und dass man sie trotz aller Schwierigkeiten korrekt berücksichtigen kann“, sagt Sakmann. Mit einigen Modifikationen sollte die Rechenmethode auch für viele andere Quantensysteme anwendbar sein.

Rückfragehinweis:
Dr. Kaspar Sakmann
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141889
kaspar.sakmann@ati.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie