Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die lodernden Flammen der Beteigeuze - Ausgedehnte Nebel um den bekannten Riesenstern

24.06.2011
Mit dem Instrument VISIR am Very Large Telescope (VLT) der ESO ist es Astronomen gelungen, die Nebelgebiete, die den Riesenstern Beteigeuze umgeben, detaillierter als je zuvor abzubilden. Ihre Struktur erinnert an lodernde Flammen, die von dem Stern ausgehen.

Tatsächlich bildet sich der Nebel aus Teilen der Atmosphäre des Sterns, die Beteigeuze an seine Umgebung abgibt.


Flammenartige Nebel um Beteigeuze
Aufnahme: ESO/P. Kervella

Der Riesenstern Beteigeuze im Sternbild Orion, ein so genannter roter Überriese, ist nicht nur einer der hellsten Sterne am Nachthimmel. Er ist mit einem Durchmesser, der in etwa der Umlaufbahn des Planeten Jupiter in unserem Sonnensystem entspricht und damit knapp viereinhalb Mal so groß ist wie die Umlaufbahn der Erde, zudem einer der größten Sterne überhaupt.

Eine Aufnahme mit dem Very Large Telescope der ESO zeigt nun, dass Beteigeuze von einem Nebel umgeben ist, der noch einmal bedeutend größer ist als der Stern selbst. Der Nebel erstreckt sich bis zu 60 Milliarden Kilometer weit von der Sternoberfläche aus ins Weltall – das entspricht etwa 400 mal dem Abstand Erde-Sonne.

Rote Überriesen wie Beteigeuze befinden sich in einem der letzten Entwicklungsstadien des Lebens massereicher Sterne. In diesem kurzen Lebensabschnitt nimmt der Durchmesser des Sterns dramatisch zu und er stößt seine äußeren Schichten ab, so dass mehr und mehr Materie in seine Umgebung abströmt. Innerhalb von nur 10.000 Jahren kann der Stern soviel Masse verlieren wie insgesamt in unserer Sonne enthalten ist.

Für den Massenverlust von Sternen wie Beteigeuze sind zwei ineinandergreifende Prozesse verantwortlich: Zunächst einmal kommt es in der Atmosphäre des Sterns zu ständigen Auf- und Abbewegungen großer Gasblasen, ähnlich dem Brodeln von kochendem Wasser in einem Topf (eso0927). Diese so genannte Konvektion führt zum Ausstoß riesiger Gaswolken, die sich von der Sternoberfläche aus nach außen hin erstrecken. Obwohl diese Blasen ungleich kleiner sind als die jetzt detailliert abgebildeten Nebel, gelang ihr Nachweis bereits in einer früheren Studie mit dem Instrument NACO am VLT [1].

Die Auswertung der neuen Beobachtungsdaten hat ergeben, dass die Gaswolken, die man nah am Stern gefunden hat, in Verbindung zu den mit VISIR abgebildeten Strukturen im Außenbereich des Nebels stehen dürften. Für die Aufnahme waren Beobachtungen im Infrarotlicht nötig, da das für das menschliche Auge sichtbare Licht des Nebels von dem des Sterns komplett überstrahlt wird. Die unregelmäßige und asymmetrische Form des Nebels liefert einen weiteren Hinweis darauf, dass Beteigeuze ihre äußeren Schichten nicht völlig gleichmäßig abgestoßen hat. Die Gasblasen und die ausgestoßenen Wolken sind wahrscheinlich verantwortlich für die klumpige Struktur des Nebels.

Das in der Aufnahme sichtbare Material besteht zum größten Teil aus Silikaten und Aluminiumstaub. Seine Zusammensetzung ähnelt jener der Erdkruste und der Oberflächen der anderen Gesteinsplaneten im Sonnensystem. Die Silikate in der Erdkruste wurden vor langer Zeit von einem längst vergangenen Überriesenstern ähnlich der Beteigeuze gebildet.

Das Bild zeigt auch die älteren NACO-Daten im gleichen Maßstab als Inset in der Bildmitte. Der kleine rote Kreis im Zentrum entspricht dem viereinhalbfachen Abstand Erde-Sonne und stellt die Ausdehnung der sichtbaren Oberfläche von Beteigeuze dar. Der hinter der schwarzen Scheibe liegende Teil des Bildes wurde ausgeblendet, da seine große Helligkeit sonst die vergleichsweise schwach leuchtenden Nebelteile überstrahlen würde. Die VISIR-Bilder wurden durch verschiedene Filter für verschiedene Wellenlängen des infraroten Spektralbereichs aufgenommen. Die in diesem Falschfarben Bild als blau wiedergegebene Strahlung entspricht den kürzeren, rot den längeren Wellenlängen des gemessenen Infrarotlichts. Das Gesichtsfeld der Aufnahme hat eine Kantenlänge von 5,63 x 5,63 Bogensekunden.

Endnote

[1] Das Infrarotinstrument NACO besteht aus zwei Komponenten: der adaptiven Optik NAOS (Nasmyth Adaptive Optics System) und CONICA (COudé Near-Infrared CAmera), einer Kombination aus Kamera und Spektrograph, die jeweils von einem französischen Konsortium und von den Max-Planck-Instituten für Astronomie in Heidelberg und für Extraterrestrische Physik in Garching in Zusammenarbeit mit der ESO entwickelt wurden. NACO ermöglicht die Gewinnung von Bildern und Spektren sowie koronographische Beobachtungen und Polarimetrie im nahinfraroten Spektralbereich unter Verwendung von Adaptiver Optik, mit der sich Störeffekte elimieren lassen, die durch die Erdatmosphäre verursacht werden.

Zusatzinformationen

Die hier vorgestellten Forschungsergebnisse von Kervella et al. erscheinen demnächst unter dem Titel “The close circumstellar environment of Betelgeuse - Diffraction-limited spectro-imaging from 7.76 to 19.50 μm with VLT/VISIR”, in der Fachzeitschrift Astronomy & Astrophysics.

Die beteiligten Wissenschaftler sind P. Kervella (Observatoire de Paris, Frankreich), G. Perrin (Observatoire de Paris), A. Chiavassa (Université Libre de Bruxelles, Belgien), S. T. Ridgway (National Optical Astronomy Observatories, Tucson, USA), J. Cami (University of Western Ontario,Canada; SETI Institute, Mountain View, USA), X. Haubois (Universidade de Sao Paulo, Brasilien) und T. Verhoelst (Instituut voor Sterrenkunde, Leuven, Niederlande).

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528226
E-Mail: eson-germany@eso.org
Pierre Kervella
LESIA, Observatoire de Paris
Paris, France
Tel: +33 1 45 07 79 66
E-Mail: Pierre.Kervella@obspm.fr
Guy Perrin
Observatoire de Paris-Meudon
Paris, France
Tel: +33 1 45 07 79 63
E-Mail: guy.perrin@obspm.fr
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
E-Mail: rhook@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org/public/germany/news/eso1121/
http://www.eso.org/public/archives/releases/sciencepapers/eso1121/eso1121.pdf
http://www.eso.org/public/images/archive/category/paranal/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen