Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lipidzusammensetzung bestimmt Energie der Membranverschmelzung

16.05.2012
Bei einer Vielzahl von biologischen Prozessen ist eine kontrollierte Verschmelzung von Membranen erforderlich, die sogenannte Membranfusion.

Wie diese Fusion auf molekularer Ebene abläuft ist in der Biophysik nach wie vor unbekannt. Biophysiker um Dr. Sebastian Aeffner und Prof. Dr. Tim Salditt von der Fakultät für Physik der Universität Göttingen haben sich nun eines Tricks bedient, um die dreidimensionale Struktur bei der Verschmelzung von Membranen mit der Röntgenbeugung aufzuklären. Die Ergebnisse sind in der Zeitschrift Proceedings of the National Academy of Sciences Plus erschienen.


(a) Schematische Zeichnung zweier Membrane, die durch einen Abstand der Dicke (dw) getrennt sind. Die Wasserschicht ist blau gekennzeichnet. Im Experiment zeigte sich, dass alle untersuchten Membransysteme charakteristische Strukturen der Membranverschmelzung ausbilden, wie in (b) skizziert. Es gibt eine kritische Wasserschichtdicke, unterhalb der die planare Membran unstabil wird. (c) Gemessene Elektronendichte einer Verschmelzungsstruktur zwischen Lipidmembranen. Hohe Dichte ist rot, niedrige Dichte (Lipidketten) blau eingefärbt.
Foto: Universität Göttingen

Göttinger Biophysiker lösen Struktur bei der Membranfusion mit Röntgenstrahlen auf

Membrane bestehen im Wesentlichen aus einer Lipiddoppelschicht und Membranproteinen und verhindern die unkontrollierte Durchmischung von Stoffwechselprodukten und Ionen. Bei einer Vielzahl von biologischen Prozessen – wie beispielsweise bei der Nervenreizleitung, der Befruchtung oder der Ausscheidung von Stoffwechselprodukten aus der Zelle – ist jedoch eine kontrollierte Verschmelzung von Membranen erforderlich, die sogenannte Membranfusion. Wie diese Fusion auf molekularer Ebene abläuft ist in der Biophysik nach wie vor unbekannt.

Zwar konnten bereits etliche Membranproteine identifiziert werden, welche die Fusion regulieren, und auch die molekulare Struktur der Proteine konnte weitgehend aufgeklärt werden. Die eigentliche Strukturänderung der Lipiddoppelschicht lässt sich jedoch nicht auflösen. Biophysiker um Dr. Sebastian Aeffner und Prof. Dr. Tim Salditt von der Fakultät für Physik der Universität Göttingen haben sich nun eines Tricks bedient, um die dreidimensionale Struktur bei der Verschmelzung von Membranen mit der Röntgenbeugung aufzuklären. Die Ergebnisse sind in der Zeitschrift Proceedings of the National Academy of Sciences Plus erschienen.

Die Göttinger Wissenschaftler brachten Lipidmembrane durch den Entzug von Wasser so eng in Kontakt, bis die Anordnung der Lipiddoppelschicht instabil wurde und sich Verbindungen zwischen benachbarten Membranen bildeten. Die Lipidmembrane fusionieren also nicht vollständig, weisen aber die für die Fusion typischen strukturellen Zwischenstufen auf. „Wenn man nun Stapel aus Hunderten bis Tausenden von Lipidmembranen verwendet, ordnen sich diese Verbindungen zwischen benachbarten Membranen periodisch im Raum an, obwohl sich Lipidmoleküle weiterhin wie in einer Flüssigkeit mischen. Dieser künstliche, durch osmotischen Druck stabilisierte fluide Kristall kann dann mit hochbrillanter Röntgenstrahlung untersucht werden“, erklärt Dr. Aeffner.

Die Ergebnisse dieser Messung sind überraschend: Die Struktur der Membranverschmelzung war bei allen untersuchten Lipidsystemen äußerst ähnlich, und die Verschmelzung fand immer bei dem gleichem kritischen Abstand statt. Große Unterschiede ergaben sich allerdings in der Arbeit, die geleistet werden muss, um die Membrane auf diesen Abstand zusammen zu bringen, und in der Energie, die für die Krümmung der Membrane aufgewendet werden muss. Durch Vergleich der unterschiedlichen Lipidzusammensetzung lässt sich nun verstehen, welche Lipide sich zum Beispiel durch das Einwirken von Proteinen verschmelzen lassen und bei welchen Lipiden die benötigte Energie kaum noch unter physiologischen Bedingungen in den biologischen Zellen aufgebracht werden kann. Dieses Wissen könnte helfen, Verschmelzungsprozesse von Membranen zu kontrollieren, die bei der Verabreichung von Arzneistoffen eine Rolle spielen.

Originalveröffentlichung: Sebastian Aeffner et al. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proceedings of the National Academy of Sciences Plus (PNAS) 2012. DOI:10.1073/pnas.1119442109

Kontaktadresse:
Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9427, Fax (0551) 39-9430
E-Mail: tsaldit@gwdg.de

Beate Hentschel | idw
Weitere Informationen:
http://www.roentgen.physik.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften