Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Lichtmix macht’s

09.09.2011
Physiker am Max-Planck-Institut für Quantenoptik erzeugen erstmals weiße Laserpulse deren elektromagnetische Felder sie auf einer Zeitskala unterhalb einer ganzen Lichtschwingung präzise modellieren. Die Technik verspricht eine umfangreiche Kontrolle über Bewegungen von Elektronen im Mikrokosmos.

Wer auf Entdeckungstour in Atomen gehen will muss wissen: Im Mikrokosmos bewegen sich Elektronen mit atemberaubenden Geschwindigkeiten und auf die Teilchen wirken zudem enorme Kräfte. Will man Elektronen beobachten, braucht man ultrakurze Lichtpulse. Will man die Teilchen zudem kontrollieren, muss man die Pulsstruktur manipulieren.


Ein Lichtwellensynthetisator spaltet einfallendes weißes Laserlicht in drei Farbkanäle auf und modifiziert es anschließend. Das Zusammensetzen erzeugt Laserpulse mit komplexen, aber fein justierbaren Wellenverläufen. Foto: Thorsten Naeser

Eine solche Manipulation hat jetzt erstmals ein Team von Physikern um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU München) in Garching bewerkstelligt. Beteiligt an dem Projekt waren auch Wissenschaftler vom Center for Free-Electron Laser Science (DESY, Hamburg) und der King-Saud-Universität (Saudi-Arabien).

Die Wissenschaftler machten sich zunutze, dass Licht neben Teilchen- auch Welleneigenschaften besitzt. Sie haben in die Wellenform weißer Laserpulse kleinste Abweichungen des typischen Licht-Schwingungsverhaltens eingebaut. Dabei verkürzten die Forscher unter anderem die Dauer der Pulse soweit, dass sie aus weniger als einer kompletten Schwingung bestehen. Damit haben die Wissenschaftler erstmals so genannte isolierte Subzykluspulse im sichtbaren Spektrum des Lichts erzeugt. Die Technik verspricht eine präzise Steuerung von Elektronenbewegungen in den elementarsten Bausteinen des Mikrokosmos. Auch die Beobachtung inneratomarer Prozesse, wird mit dem neuen Werkzeug präziser, da sie eine zeitlich exakte Anregung von Prozessen erlaubt. Die Forscher berichten über ihre Ergebnisse im Wissenschaftsmagazin SCIENCE (SCIENCE Express, 8.9.2011).

Bewegungen von Elektronen gehen innerhalb von Attosekunden über die Bühne. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. Auf diesen Zeitskalen kann nur noch Licht mithalten. Aufgrund der schnellen Schwingung seines elektromagnetischen Feldes wirkt es wie eine Art Pinzette auf Elektronen und deren Bewegung und beeinflusst so deren gegenseitiges Zusammenspiel. Die Zeit, in der das Licht moderner Laserquellen genau eine Schwingung aus einem Wellenberg und ein Wellental vollführt, beläuft sich auf rund 2,6 Femtosekunden. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde.

Aus diesem Grund ist Licht ein vielversprechender Kandidat für die Kontrolle von Bewegungen im Mikrokosmos. Aber bevor es soweit ist müssen die Lichtfelder gezähmt werden, d.h. ihr Feld muss präzise auf einer Zeitskala eines so genannten Subzyklus, der kürzer als eine komplette Schwingung ist, kontrolliert werden. Man muss also erst lernen, die außergewöhnliche Pinzette gezielt zu entwickeln.

Nun ist es dem internationalen Team am MPQ um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz gelungen, diesem hochgesteckten Ziel einen Schritt näher zu kommen. Sie haben erstmals Wellenformen in Laserpulsen mit Subzyklus-Präzession geformt.

Um Lichtpulse auf einer Subzykus-Zeitskala zu kontrollieren, benötigt man weißes Laserlicht, das über alle Wellenlängen (Lichtfarben) vom nahen ultravioletten, über den sichtbaren bis hin zum nahen infraroten Anteil verfügt. Die Physiker erzeugten erstmals diese Lichtpulse und sendeten sie anschließend in einen neu entwickelten, so genannten „Lichtfeldsynthetisator“. Während ein Synthesizer, wie wir ihn aus der Musik kennen, akustische Wellen unterschiedlicher Töne generiert und diese überlagert, arbeitet der Lichtfeldsynthetisator mit optischen Lichtwellen. Der Apparat spaltet erst das einfallende weiße Laserlicht in einen roten, gelben und blauen Farbanteil auf. Anschließend setzen die Wissenschaftler mit diesem Apparat die einzelnen farbigen Bestandteile des Lichts wieder beliebig zusammen. Einige Komponenten dieses neuen Forschungsgerätes, wie Spiegel und ausgeklügelte Strahlteiler, wurden im Servicezentrum des Munich Centre for Advanced Photonics (MAP) an der LMU entwickelt.

Mit dieser Technik ist es den Wissenschaftlern gelungen völlig neue Wellenverläufe in den einzelnen Pulsen zu generieren. Zudem haben sie die bis heute kürzesten Pulse im sichtbaren Bereich des Lichts erzeugt. Sie dauern nur 2,1 Femtosekunden. Diese sind intensiver als bisherige Femtosekunden-Lichtpulse im sichtbaren Spektrum, denn nun ballt sich die gesamte Energie des elektromagnetischen Feldes in einem winzigen zeitlichen Fenster.

Es sind genau diese starken, spezifisch geformten, elektromagnetischen Kräfte, die man benötigt, um Elektronen zu kontrollieren. Sie gleichen denen, die in Atomen oder Molekülen herrschen. Doch wo starke Kräfte walten, ist auch Präzision gefragt. Diese Präzision garantieren die kontrollierten Wellenverläufe der Lichtpulse. Sie steuern Elektronenbewegungen ähnlich wie mit einer feinen Pinzette.

Mit ihren Ergebnissen sind die Wissenschaftler der Kontrolle des Mikrokosmos einen großen Schritt näher gekommen. „Mit den neu entwickelten Werkzeugen sind wir in der Lage, sehr genau inneratomare Vorgänge auszulösen, zu steuern und besser zu verstehen. Wir bewerkstelligen mit dem Gerät die Feinstrukturierung von ultrakurzen Lichtfeldern und vermessen das neu geformte Lichtfeld verlässlich.“, erklärt Dr. Adrian Wirth, Postdoc im Team um Eleftherios Goulielmakis, dem Leiter der ERC-Forschungsgruppe „Attoelectronics“.

Die neue Technik haben die Physiker bereits angewandt. Sie haben die Lichtpulse auf Kryptonatome geschossen. Die Lichtpulse schlugen aus den Atomen das äußerste Elektron innerhalb von weniger als 700 Attosekunden heraus. Dies ist der schnellste elektronische Vorgang, der bis heute mit optisch sichtbarem Licht initiiert wurde. Ähnliche Prozesse können sicherlich auch in komplexeren Strukturen wie Molekülen Festkörpern oder Nanopartikeln erzielt werden.

Die neue Lasertechnik lässt eine Elektronik, die auf Lichtwellensteuerung basiert, greifbar werden. „Lichtfelder werden Elektronen nicht nur in Atomen oder isolierten Molekülen steuern, sondern sogar in mikroskopisch kleinen elektrischen Schaltungen mit beispielloser Geschwindigkeit“, meint Eleftherios Goulielmakis. Sein Team erkundet derzeit die Prinzipien der elektronischen Steuerung in diesen extremen Bereichen. „Wir verstehen die Gesetzmäßigkeiten des Mikrokosmos immer besser und lernen ihn zu beherrschen“, ergänzt Ferenc Krausz. [Thorsten Naeser]

Bildmaterial zum Thema ist erhältlich unter:
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html
Originalveröffentlichung:
A.Wirth, M.Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz & E. Goulielmakis

Synthesized Light Transients, SCIENCE Express 8.9.2011

Weitere Informationen erhalten Sie von:

Dr. Eleftherios Goulielmakis
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
E-mail: elgo@mpq.mpg.de
http://www.attoworld.de/goulielmakis-group/
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/goulielmakis-group/
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte