Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Lichtmix macht’s

09.09.2011
Physiker am Max-Planck-Institut für Quantenoptik erzeugen erstmals weiße Laserpulse deren elektromagnetische Felder sie auf einer Zeitskala unterhalb einer ganzen Lichtschwingung präzise modellieren. Die Technik verspricht eine umfangreiche Kontrolle über Bewegungen von Elektronen im Mikrokosmos.

Wer auf Entdeckungstour in Atomen gehen will muss wissen: Im Mikrokosmos bewegen sich Elektronen mit atemberaubenden Geschwindigkeiten und auf die Teilchen wirken zudem enorme Kräfte. Will man Elektronen beobachten, braucht man ultrakurze Lichtpulse. Will man die Teilchen zudem kontrollieren, muss man die Pulsstruktur manipulieren.


Ein Lichtwellensynthetisator spaltet einfallendes weißes Laserlicht in drei Farbkanäle auf und modifiziert es anschließend. Das Zusammensetzen erzeugt Laserpulse mit komplexen, aber fein justierbaren Wellenverläufen. Foto: Thorsten Naeser

Eine solche Manipulation hat jetzt erstmals ein Team von Physikern um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU München) in Garching bewerkstelligt. Beteiligt an dem Projekt waren auch Wissenschaftler vom Center for Free-Electron Laser Science (DESY, Hamburg) und der King-Saud-Universität (Saudi-Arabien).

Die Wissenschaftler machten sich zunutze, dass Licht neben Teilchen- auch Welleneigenschaften besitzt. Sie haben in die Wellenform weißer Laserpulse kleinste Abweichungen des typischen Licht-Schwingungsverhaltens eingebaut. Dabei verkürzten die Forscher unter anderem die Dauer der Pulse soweit, dass sie aus weniger als einer kompletten Schwingung bestehen. Damit haben die Wissenschaftler erstmals so genannte isolierte Subzykluspulse im sichtbaren Spektrum des Lichts erzeugt. Die Technik verspricht eine präzise Steuerung von Elektronenbewegungen in den elementarsten Bausteinen des Mikrokosmos. Auch die Beobachtung inneratomarer Prozesse, wird mit dem neuen Werkzeug präziser, da sie eine zeitlich exakte Anregung von Prozessen erlaubt. Die Forscher berichten über ihre Ergebnisse im Wissenschaftsmagazin SCIENCE (SCIENCE Express, 8.9.2011).

Bewegungen von Elektronen gehen innerhalb von Attosekunden über die Bühne. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. Auf diesen Zeitskalen kann nur noch Licht mithalten. Aufgrund der schnellen Schwingung seines elektromagnetischen Feldes wirkt es wie eine Art Pinzette auf Elektronen und deren Bewegung und beeinflusst so deren gegenseitiges Zusammenspiel. Die Zeit, in der das Licht moderner Laserquellen genau eine Schwingung aus einem Wellenberg und ein Wellental vollführt, beläuft sich auf rund 2,6 Femtosekunden. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde.

Aus diesem Grund ist Licht ein vielversprechender Kandidat für die Kontrolle von Bewegungen im Mikrokosmos. Aber bevor es soweit ist müssen die Lichtfelder gezähmt werden, d.h. ihr Feld muss präzise auf einer Zeitskala eines so genannten Subzyklus, der kürzer als eine komplette Schwingung ist, kontrolliert werden. Man muss also erst lernen, die außergewöhnliche Pinzette gezielt zu entwickeln.

Nun ist es dem internationalen Team am MPQ um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz gelungen, diesem hochgesteckten Ziel einen Schritt näher zu kommen. Sie haben erstmals Wellenformen in Laserpulsen mit Subzyklus-Präzession geformt.

Um Lichtpulse auf einer Subzykus-Zeitskala zu kontrollieren, benötigt man weißes Laserlicht, das über alle Wellenlängen (Lichtfarben) vom nahen ultravioletten, über den sichtbaren bis hin zum nahen infraroten Anteil verfügt. Die Physiker erzeugten erstmals diese Lichtpulse und sendeten sie anschließend in einen neu entwickelten, so genannten „Lichtfeldsynthetisator“. Während ein Synthesizer, wie wir ihn aus der Musik kennen, akustische Wellen unterschiedlicher Töne generiert und diese überlagert, arbeitet der Lichtfeldsynthetisator mit optischen Lichtwellen. Der Apparat spaltet erst das einfallende weiße Laserlicht in einen roten, gelben und blauen Farbanteil auf. Anschließend setzen die Wissenschaftler mit diesem Apparat die einzelnen farbigen Bestandteile des Lichts wieder beliebig zusammen. Einige Komponenten dieses neuen Forschungsgerätes, wie Spiegel und ausgeklügelte Strahlteiler, wurden im Servicezentrum des Munich Centre for Advanced Photonics (MAP) an der LMU entwickelt.

Mit dieser Technik ist es den Wissenschaftlern gelungen völlig neue Wellenverläufe in den einzelnen Pulsen zu generieren. Zudem haben sie die bis heute kürzesten Pulse im sichtbaren Bereich des Lichts erzeugt. Sie dauern nur 2,1 Femtosekunden. Diese sind intensiver als bisherige Femtosekunden-Lichtpulse im sichtbaren Spektrum, denn nun ballt sich die gesamte Energie des elektromagnetischen Feldes in einem winzigen zeitlichen Fenster.

Es sind genau diese starken, spezifisch geformten, elektromagnetischen Kräfte, die man benötigt, um Elektronen zu kontrollieren. Sie gleichen denen, die in Atomen oder Molekülen herrschen. Doch wo starke Kräfte walten, ist auch Präzision gefragt. Diese Präzision garantieren die kontrollierten Wellenverläufe der Lichtpulse. Sie steuern Elektronenbewegungen ähnlich wie mit einer feinen Pinzette.

Mit ihren Ergebnissen sind die Wissenschaftler der Kontrolle des Mikrokosmos einen großen Schritt näher gekommen. „Mit den neu entwickelten Werkzeugen sind wir in der Lage, sehr genau inneratomare Vorgänge auszulösen, zu steuern und besser zu verstehen. Wir bewerkstelligen mit dem Gerät die Feinstrukturierung von ultrakurzen Lichtfeldern und vermessen das neu geformte Lichtfeld verlässlich.“, erklärt Dr. Adrian Wirth, Postdoc im Team um Eleftherios Goulielmakis, dem Leiter der ERC-Forschungsgruppe „Attoelectronics“.

Die neue Technik haben die Physiker bereits angewandt. Sie haben die Lichtpulse auf Kryptonatome geschossen. Die Lichtpulse schlugen aus den Atomen das äußerste Elektron innerhalb von weniger als 700 Attosekunden heraus. Dies ist der schnellste elektronische Vorgang, der bis heute mit optisch sichtbarem Licht initiiert wurde. Ähnliche Prozesse können sicherlich auch in komplexeren Strukturen wie Molekülen Festkörpern oder Nanopartikeln erzielt werden.

Die neue Lasertechnik lässt eine Elektronik, die auf Lichtwellensteuerung basiert, greifbar werden. „Lichtfelder werden Elektronen nicht nur in Atomen oder isolierten Molekülen steuern, sondern sogar in mikroskopisch kleinen elektrischen Schaltungen mit beispielloser Geschwindigkeit“, meint Eleftherios Goulielmakis. Sein Team erkundet derzeit die Prinzipien der elektronischen Steuerung in diesen extremen Bereichen. „Wir verstehen die Gesetzmäßigkeiten des Mikrokosmos immer besser und lernen ihn zu beherrschen“, ergänzt Ferenc Krausz. [Thorsten Naeser]

Bildmaterial zum Thema ist erhältlich unter:
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html
Originalveröffentlichung:
A.Wirth, M.Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz & E. Goulielmakis

Synthesized Light Transients, SCIENCE Express 8.9.2011

Weitere Informationen erhalten Sie von:

Dr. Eleftherios Goulielmakis
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
E-mail: elgo@mpq.mpg.de
http://www.attoworld.de/goulielmakis-group/
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/goulielmakis-group/
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie