Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Lichtmix macht’s

09.09.2011
Physiker am Max-Planck-Institut für Quantenoptik erzeugen erstmals weiße Laserpulse deren elektromagnetische Felder sie auf einer Zeitskala unterhalb einer ganzen Lichtschwingung präzise modellieren. Die Technik verspricht eine umfangreiche Kontrolle über Bewegungen von Elektronen im Mikrokosmos.

Wer auf Entdeckungstour in Atomen gehen will muss wissen: Im Mikrokosmos bewegen sich Elektronen mit atemberaubenden Geschwindigkeiten und auf die Teilchen wirken zudem enorme Kräfte. Will man Elektronen beobachten, braucht man ultrakurze Lichtpulse. Will man die Teilchen zudem kontrollieren, muss man die Pulsstruktur manipulieren.


Ein Lichtwellensynthetisator spaltet einfallendes weißes Laserlicht in drei Farbkanäle auf und modifiziert es anschließend. Das Zusammensetzen erzeugt Laserpulse mit komplexen, aber fein justierbaren Wellenverläufen. Foto: Thorsten Naeser

Eine solche Manipulation hat jetzt erstmals ein Team von Physikern um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU München) in Garching bewerkstelligt. Beteiligt an dem Projekt waren auch Wissenschaftler vom Center for Free-Electron Laser Science (DESY, Hamburg) und der King-Saud-Universität (Saudi-Arabien).

Die Wissenschaftler machten sich zunutze, dass Licht neben Teilchen- auch Welleneigenschaften besitzt. Sie haben in die Wellenform weißer Laserpulse kleinste Abweichungen des typischen Licht-Schwingungsverhaltens eingebaut. Dabei verkürzten die Forscher unter anderem die Dauer der Pulse soweit, dass sie aus weniger als einer kompletten Schwingung bestehen. Damit haben die Wissenschaftler erstmals so genannte isolierte Subzykluspulse im sichtbaren Spektrum des Lichts erzeugt. Die Technik verspricht eine präzise Steuerung von Elektronenbewegungen in den elementarsten Bausteinen des Mikrokosmos. Auch die Beobachtung inneratomarer Prozesse, wird mit dem neuen Werkzeug präziser, da sie eine zeitlich exakte Anregung von Prozessen erlaubt. Die Forscher berichten über ihre Ergebnisse im Wissenschaftsmagazin SCIENCE (SCIENCE Express, 8.9.2011).

Bewegungen von Elektronen gehen innerhalb von Attosekunden über die Bühne. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. Auf diesen Zeitskalen kann nur noch Licht mithalten. Aufgrund der schnellen Schwingung seines elektromagnetischen Feldes wirkt es wie eine Art Pinzette auf Elektronen und deren Bewegung und beeinflusst so deren gegenseitiges Zusammenspiel. Die Zeit, in der das Licht moderner Laserquellen genau eine Schwingung aus einem Wellenberg und ein Wellental vollführt, beläuft sich auf rund 2,6 Femtosekunden. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde.

Aus diesem Grund ist Licht ein vielversprechender Kandidat für die Kontrolle von Bewegungen im Mikrokosmos. Aber bevor es soweit ist müssen die Lichtfelder gezähmt werden, d.h. ihr Feld muss präzise auf einer Zeitskala eines so genannten Subzyklus, der kürzer als eine komplette Schwingung ist, kontrolliert werden. Man muss also erst lernen, die außergewöhnliche Pinzette gezielt zu entwickeln.

Nun ist es dem internationalen Team am MPQ um Dr. Eleftherios Goulielmakis und Prof. Ferenc Krausz gelungen, diesem hochgesteckten Ziel einen Schritt näher zu kommen. Sie haben erstmals Wellenformen in Laserpulsen mit Subzyklus-Präzession geformt.

Um Lichtpulse auf einer Subzykus-Zeitskala zu kontrollieren, benötigt man weißes Laserlicht, das über alle Wellenlängen (Lichtfarben) vom nahen ultravioletten, über den sichtbaren bis hin zum nahen infraroten Anteil verfügt. Die Physiker erzeugten erstmals diese Lichtpulse und sendeten sie anschließend in einen neu entwickelten, so genannten „Lichtfeldsynthetisator“. Während ein Synthesizer, wie wir ihn aus der Musik kennen, akustische Wellen unterschiedlicher Töne generiert und diese überlagert, arbeitet der Lichtfeldsynthetisator mit optischen Lichtwellen. Der Apparat spaltet erst das einfallende weiße Laserlicht in einen roten, gelben und blauen Farbanteil auf. Anschließend setzen die Wissenschaftler mit diesem Apparat die einzelnen farbigen Bestandteile des Lichts wieder beliebig zusammen. Einige Komponenten dieses neuen Forschungsgerätes, wie Spiegel und ausgeklügelte Strahlteiler, wurden im Servicezentrum des Munich Centre for Advanced Photonics (MAP) an der LMU entwickelt.

Mit dieser Technik ist es den Wissenschaftlern gelungen völlig neue Wellenverläufe in den einzelnen Pulsen zu generieren. Zudem haben sie die bis heute kürzesten Pulse im sichtbaren Bereich des Lichts erzeugt. Sie dauern nur 2,1 Femtosekunden. Diese sind intensiver als bisherige Femtosekunden-Lichtpulse im sichtbaren Spektrum, denn nun ballt sich die gesamte Energie des elektromagnetischen Feldes in einem winzigen zeitlichen Fenster.

Es sind genau diese starken, spezifisch geformten, elektromagnetischen Kräfte, die man benötigt, um Elektronen zu kontrollieren. Sie gleichen denen, die in Atomen oder Molekülen herrschen. Doch wo starke Kräfte walten, ist auch Präzision gefragt. Diese Präzision garantieren die kontrollierten Wellenverläufe der Lichtpulse. Sie steuern Elektronenbewegungen ähnlich wie mit einer feinen Pinzette.

Mit ihren Ergebnissen sind die Wissenschaftler der Kontrolle des Mikrokosmos einen großen Schritt näher gekommen. „Mit den neu entwickelten Werkzeugen sind wir in der Lage, sehr genau inneratomare Vorgänge auszulösen, zu steuern und besser zu verstehen. Wir bewerkstelligen mit dem Gerät die Feinstrukturierung von ultrakurzen Lichtfeldern und vermessen das neu geformte Lichtfeld verlässlich.“, erklärt Dr. Adrian Wirth, Postdoc im Team um Eleftherios Goulielmakis, dem Leiter der ERC-Forschungsgruppe „Attoelectronics“.

Die neue Technik haben die Physiker bereits angewandt. Sie haben die Lichtpulse auf Kryptonatome geschossen. Die Lichtpulse schlugen aus den Atomen das äußerste Elektron innerhalb von weniger als 700 Attosekunden heraus. Dies ist der schnellste elektronische Vorgang, der bis heute mit optisch sichtbarem Licht initiiert wurde. Ähnliche Prozesse können sicherlich auch in komplexeren Strukturen wie Molekülen Festkörpern oder Nanopartikeln erzielt werden.

Die neue Lasertechnik lässt eine Elektronik, die auf Lichtwellensteuerung basiert, greifbar werden. „Lichtfelder werden Elektronen nicht nur in Atomen oder isolierten Molekülen steuern, sondern sogar in mikroskopisch kleinen elektrischen Schaltungen mit beispielloser Geschwindigkeit“, meint Eleftherios Goulielmakis. Sein Team erkundet derzeit die Prinzipien der elektronischen Steuerung in diesen extremen Bereichen. „Wir verstehen die Gesetzmäßigkeiten des Mikrokosmos immer besser und lernen ihn zu beherrschen“, ergänzt Ferenc Krausz. [Thorsten Naeser]

Bildmaterial zum Thema ist erhältlich unter:
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html
Originalveröffentlichung:
A.Wirth, M.Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz & E. Goulielmakis

Synthesized Light Transients, SCIENCE Express 8.9.2011

Weitere Informationen erhalten Sie von:

Dr. Eleftherios Goulielmakis
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
E-mail: elgo@mpq.mpg.de
http://www.attoworld.de/goulielmakis-group/
Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/goulielmakis-group/
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie