Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtkristall mit Drehsinn

29.10.2013
Seit mehr als 40 Jahren verfolgen Physiker das Ziel, das komplexe Verhalten von Elektronen in zweidimensionalen Kristallen unter dem Einfluss starker Magnetfelder experimentell zu erforschen.

Jetzt ist es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwigs-Maximilians-Universität München und Direktor am MPQ) in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes (CSIC/UAM Madrid) gelungen, mit einer neu entwickelten experimentellen Methode zweidimensionale Festkörperkristalle mit künstlichen Gittern aus neutralen Atomen und Laserlicht zu simulieren.


Abbildung 1:
Zyklotron-ähnliche Bewegung der Atome in einem speziell erzeugten Lichtkristall unter Einfluss eines sehr starken effektiven Magnetfeldes. Die experimentell erzeugten effektiven Feldstärken sind für natürlich vorkommende Materialien vergleichbar mit einem Magnetfeld von einigen 10.000 Tesla. Im Experiment wurde sowohl der berühmte Hofstadter-Harper als auch der Quantum Spin Hall Hamilton-Operator verwirklicht.

In diesen künstlichen Quantenmaterialien können die Atome effektiven Magnetfeldern ausgesetzt werden, die einige tausende Male stärker sind als es in natürlich vorkommenden Festkörpern zu realisieren wäre (Phys. Rev. Lett. 111, 185301, 2013).

Geladene Teilchen in Magnetfeldern erfahren eine Kraft senkrecht zu ihrer Bewegungsrichtung – die Lorentz-Kraft. Die Lorentz-Kraft zwingt die Teilchen, sich auf Kreisbahnen, sogenannten Zyklotron-Orbits, senkrecht zur Magnetfeldrichtung zu bewegen. Ein ausreichend großes Magnetfeld kann so die Eigenschaften eines Materials dramatisch verändern und neue Quantenphänomene wie z. B. den Quanten Hall Effekt hervorrufen. Der Radius der Zyklotron-Orbits nimmt dabei mit zunehmender Magnetfeldstärke ab. Für übliche Magnetfeldstärken ist er weit größer als der Abstand zwischen benachbarten Ionen im Material, so dass der Einfluss des Kristallpotentials zu vernachlässigen ist. Bei sehr starken Magnetfeldern sind Ionen-Abstand und Zyklotron-Bahnen jedoch vergleichbar groß, und das Zusammenspiel zwischen Magnetfeld und Kristallpotential führt zu eindrucksvollen neuen Effekten.

Diese zeigen sich beispielsweise in einer fraktalen Struktur des Energiespektrums der Elektronene, welches erstmals 1976 von Douglas Hofstadter vorhergesagt wurde und als „Hofstadter-Schmetterling“ bekannt ist. Viele faszinierende elektronische Materialeigenschaften sind damit verbunden, jedoch war es bisher nicht möglich, das Problem in seiner vollen Komplexität zu untersuchen.

In natürlich vorkommenden Materialien ist der Abstand zwischen benachbarten Ionen sehr klein. Daher ist es schwierig, den Bereich des Hofstadter-Schmetterlings zu realisieren – man würde Magnetfeldstärken benötigen, die sich mit vorhandenen Mitteln nicht erzeugen lassen. Einen Ausweg stellen künstlich hergestellte Materialien dar, deren Gitterkonstanten effektiv größer sind, wie z.B. Systeme aus zwei überlagerten Schichten aus Graphen und Bornitrid.

Die Experimente des Münchner Wissenschaftlerteams folgen einem alternativen Ansatz. Hier werden starke Magnetfelder künstlich erzeugt, indem ultrakalte Atome speziell angelegten Laserfeldern ausgesetzt werden. Das untersuchte Quantensystem besteht aus Rubidium-Atomen, die mithilfe von stehenden Wellen in periodischen Strukturen gefangen werden. „Die Atome können sich nur in Bereichen hoher Lichtintensitäten aufhalten und ordnen sich daher in einer 2D Struktur an, die sich anschaulich mit der Form eines Eierkarton vergleichen lässt.“, erklärt Monika Aidelsburger, eine Physikerin im Team von Prof. Bloch. „Die Laserstrahlen übernehmen die Rolle des Ionenkristalls und die Atome die der Elektronen.“

Einen Haken gibt es dabei jedoch: da die Atome elektrisch neutral sind, erfahren sie auch in einem externen Magnetfeld keine Lorentz-Kraft, die sie auf kreisförmige Bahnen zwingt. Die Aufgabe bestand darin, mit einer neuen Technik diesen Effekt der Lorentz-Kraft für neutrale Teilchen nachzuahmen. Eine Verknüpfung aus Verkippen und gleichzeitigem Schütteln des Gitters mithilfe zweier zusätzlicher Laserstrahlen hatte die gewünschte Wirkung: die Atome bewegten sich im Gitter auf zyklotron-ähnlichen Bahnen, so wie geladene Teilchen in einem externen Magnetfeld. Auf diesem Weg gelang es dem Team künstliche Magnetfelder zu erzeugen, die stark genug sind um die Quantenphänomene im Bereich des Hofstadter-Schmetterlings zu untersuchen.

Zusätzlich gelang es den Wissenschaftlern den sogenannten Spin-Hall-Effekt zu beobachten: zwei Teilchen mit entgegengesetztem Spin spüren ein Magnetfeld derselben Stärke, jedoch mit jeweils entgegengesetzter Richtung. Infolgedessen sind auch die Richtung der Lorentz-Kraft und die Zyklotron-Bewegung für die beiden Spins entgegengesetzt. Die beiden Spin-Zustände werden in diesen Experimenten durch zwei verschiedene Zustände der Rubidium Atome realisiert.

In zukünftigen Experimenten könnte diese Methode dazu dienen die komplexe Physik des Hofstadter-Modells mithilfe des defektfreien und gut kontrollierbaren Systems von ultrakalten Atomen in optischen Gittern experimentell zu untersuchen. Die direkte Beobachtung der mikroskopischen Bewegung der Teilchen im Gitter mit neuen experimentellen Techniken wie z. B. dem Quantengas-Mikroskop könnte zu einem besseren Verständnis von Materialeigenschaften führen. Darüber hinaus könnte die neue Methode auch den Weg bereiten für die Entdeckung und Erforschung neuer Quantenphasen von Materialien unter extremen experimentellen Bedingungen. [M.A].

Originalveröffentlichung:

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices

Physical Review. Letters 111, 185301 (2013)

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
M.Sc. Monika Aidelsburger
LMU München
Telefon: +49 89 2180 6119
E-Mail: monika.aidelsburger@physik.uni-muenchen.de
Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Telefon: +34 91 299 9862
E-Mail: belen.paredes@csic.es

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de/media/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten