Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtkristall mit Drehsinn

29.10.2013
Seit mehr als 40 Jahren verfolgen Physiker das Ziel, das komplexe Verhalten von Elektronen in zweidimensionalen Kristallen unter dem Einfluss starker Magnetfelder experimentell zu erforschen.

Jetzt ist es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwigs-Maximilians-Universität München und Direktor am MPQ) in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes (CSIC/UAM Madrid) gelungen, mit einer neu entwickelten experimentellen Methode zweidimensionale Festkörperkristalle mit künstlichen Gittern aus neutralen Atomen und Laserlicht zu simulieren.


Abbildung 1:
Zyklotron-ähnliche Bewegung der Atome in einem speziell erzeugten Lichtkristall unter Einfluss eines sehr starken effektiven Magnetfeldes. Die experimentell erzeugten effektiven Feldstärken sind für natürlich vorkommende Materialien vergleichbar mit einem Magnetfeld von einigen 10.000 Tesla. Im Experiment wurde sowohl der berühmte Hofstadter-Harper als auch der Quantum Spin Hall Hamilton-Operator verwirklicht.

In diesen künstlichen Quantenmaterialien können die Atome effektiven Magnetfeldern ausgesetzt werden, die einige tausende Male stärker sind als es in natürlich vorkommenden Festkörpern zu realisieren wäre (Phys. Rev. Lett. 111, 185301, 2013).

Geladene Teilchen in Magnetfeldern erfahren eine Kraft senkrecht zu ihrer Bewegungsrichtung – die Lorentz-Kraft. Die Lorentz-Kraft zwingt die Teilchen, sich auf Kreisbahnen, sogenannten Zyklotron-Orbits, senkrecht zur Magnetfeldrichtung zu bewegen. Ein ausreichend großes Magnetfeld kann so die Eigenschaften eines Materials dramatisch verändern und neue Quantenphänomene wie z. B. den Quanten Hall Effekt hervorrufen. Der Radius der Zyklotron-Orbits nimmt dabei mit zunehmender Magnetfeldstärke ab. Für übliche Magnetfeldstärken ist er weit größer als der Abstand zwischen benachbarten Ionen im Material, so dass der Einfluss des Kristallpotentials zu vernachlässigen ist. Bei sehr starken Magnetfeldern sind Ionen-Abstand und Zyklotron-Bahnen jedoch vergleichbar groß, und das Zusammenspiel zwischen Magnetfeld und Kristallpotential führt zu eindrucksvollen neuen Effekten.

Diese zeigen sich beispielsweise in einer fraktalen Struktur des Energiespektrums der Elektronene, welches erstmals 1976 von Douglas Hofstadter vorhergesagt wurde und als „Hofstadter-Schmetterling“ bekannt ist. Viele faszinierende elektronische Materialeigenschaften sind damit verbunden, jedoch war es bisher nicht möglich, das Problem in seiner vollen Komplexität zu untersuchen.

In natürlich vorkommenden Materialien ist der Abstand zwischen benachbarten Ionen sehr klein. Daher ist es schwierig, den Bereich des Hofstadter-Schmetterlings zu realisieren – man würde Magnetfeldstärken benötigen, die sich mit vorhandenen Mitteln nicht erzeugen lassen. Einen Ausweg stellen künstlich hergestellte Materialien dar, deren Gitterkonstanten effektiv größer sind, wie z.B. Systeme aus zwei überlagerten Schichten aus Graphen und Bornitrid.

Die Experimente des Münchner Wissenschaftlerteams folgen einem alternativen Ansatz. Hier werden starke Magnetfelder künstlich erzeugt, indem ultrakalte Atome speziell angelegten Laserfeldern ausgesetzt werden. Das untersuchte Quantensystem besteht aus Rubidium-Atomen, die mithilfe von stehenden Wellen in periodischen Strukturen gefangen werden. „Die Atome können sich nur in Bereichen hoher Lichtintensitäten aufhalten und ordnen sich daher in einer 2D Struktur an, die sich anschaulich mit der Form eines Eierkarton vergleichen lässt.“, erklärt Monika Aidelsburger, eine Physikerin im Team von Prof. Bloch. „Die Laserstrahlen übernehmen die Rolle des Ionenkristalls und die Atome die der Elektronen.“

Einen Haken gibt es dabei jedoch: da die Atome elektrisch neutral sind, erfahren sie auch in einem externen Magnetfeld keine Lorentz-Kraft, die sie auf kreisförmige Bahnen zwingt. Die Aufgabe bestand darin, mit einer neuen Technik diesen Effekt der Lorentz-Kraft für neutrale Teilchen nachzuahmen. Eine Verknüpfung aus Verkippen und gleichzeitigem Schütteln des Gitters mithilfe zweier zusätzlicher Laserstrahlen hatte die gewünschte Wirkung: die Atome bewegten sich im Gitter auf zyklotron-ähnlichen Bahnen, so wie geladene Teilchen in einem externen Magnetfeld. Auf diesem Weg gelang es dem Team künstliche Magnetfelder zu erzeugen, die stark genug sind um die Quantenphänomene im Bereich des Hofstadter-Schmetterlings zu untersuchen.

Zusätzlich gelang es den Wissenschaftlern den sogenannten Spin-Hall-Effekt zu beobachten: zwei Teilchen mit entgegengesetztem Spin spüren ein Magnetfeld derselben Stärke, jedoch mit jeweils entgegengesetzter Richtung. Infolgedessen sind auch die Richtung der Lorentz-Kraft und die Zyklotron-Bewegung für die beiden Spins entgegengesetzt. Die beiden Spin-Zustände werden in diesen Experimenten durch zwei verschiedene Zustände der Rubidium Atome realisiert.

In zukünftigen Experimenten könnte diese Methode dazu dienen die komplexe Physik des Hofstadter-Modells mithilfe des defektfreien und gut kontrollierbaren Systems von ultrakalten Atomen in optischen Gittern experimentell zu untersuchen. Die direkte Beobachtung der mikroskopischen Bewegung der Teilchen im Gitter mit neuen experimentellen Techniken wie z. B. dem Quantengas-Mikroskop könnte zu einem besseren Verständnis von Materialeigenschaften führen. Darüber hinaus könnte die neue Methode auch den Weg bereiten für die Entdeckung und Erforschung neuer Quantenphasen von Materialien unter extremen experimentellen Bedingungen. [M.A].

Originalveröffentlichung:

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices

Physical Review. Letters 111, 185301 (2013)

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
M.Sc. Monika Aidelsburger
LMU München
Telefon: +49 89 2180 6119
E-Mail: monika.aidelsburger@physik.uni-muenchen.de
Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Telefon: +34 91 299 9862
E-Mail: belen.paredes@csic.es

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de/media/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie