Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Lichtkristall mit Drehsinn

29.10.2013
Seit mehr als 40 Jahren verfolgen Physiker das Ziel, das komplexe Verhalten von Elektronen in zweidimensionalen Kristallen unter dem Einfluss starker Magnetfelder experimentell zu erforschen.

Jetzt ist es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwigs-Maximilians-Universität München und Direktor am MPQ) in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes (CSIC/UAM Madrid) gelungen, mit einer neu entwickelten experimentellen Methode zweidimensionale Festkörperkristalle mit künstlichen Gittern aus neutralen Atomen und Laserlicht zu simulieren.


Abbildung 1:
Zyklotron-ähnliche Bewegung der Atome in einem speziell erzeugten Lichtkristall unter Einfluss eines sehr starken effektiven Magnetfeldes. Die experimentell erzeugten effektiven Feldstärken sind für natürlich vorkommende Materialien vergleichbar mit einem Magnetfeld von einigen 10.000 Tesla. Im Experiment wurde sowohl der berühmte Hofstadter-Harper als auch der Quantum Spin Hall Hamilton-Operator verwirklicht.

In diesen künstlichen Quantenmaterialien können die Atome effektiven Magnetfeldern ausgesetzt werden, die einige tausende Male stärker sind als es in natürlich vorkommenden Festkörpern zu realisieren wäre (Phys. Rev. Lett. 111, 185301, 2013).

Geladene Teilchen in Magnetfeldern erfahren eine Kraft senkrecht zu ihrer Bewegungsrichtung – die Lorentz-Kraft. Die Lorentz-Kraft zwingt die Teilchen, sich auf Kreisbahnen, sogenannten Zyklotron-Orbits, senkrecht zur Magnetfeldrichtung zu bewegen. Ein ausreichend großes Magnetfeld kann so die Eigenschaften eines Materials dramatisch verändern und neue Quantenphänomene wie z. B. den Quanten Hall Effekt hervorrufen. Der Radius der Zyklotron-Orbits nimmt dabei mit zunehmender Magnetfeldstärke ab. Für übliche Magnetfeldstärken ist er weit größer als der Abstand zwischen benachbarten Ionen im Material, so dass der Einfluss des Kristallpotentials zu vernachlässigen ist. Bei sehr starken Magnetfeldern sind Ionen-Abstand und Zyklotron-Bahnen jedoch vergleichbar groß, und das Zusammenspiel zwischen Magnetfeld und Kristallpotential führt zu eindrucksvollen neuen Effekten.

Diese zeigen sich beispielsweise in einer fraktalen Struktur des Energiespektrums der Elektronene, welches erstmals 1976 von Douglas Hofstadter vorhergesagt wurde und als „Hofstadter-Schmetterling“ bekannt ist. Viele faszinierende elektronische Materialeigenschaften sind damit verbunden, jedoch war es bisher nicht möglich, das Problem in seiner vollen Komplexität zu untersuchen.

In natürlich vorkommenden Materialien ist der Abstand zwischen benachbarten Ionen sehr klein. Daher ist es schwierig, den Bereich des Hofstadter-Schmetterlings zu realisieren – man würde Magnetfeldstärken benötigen, die sich mit vorhandenen Mitteln nicht erzeugen lassen. Einen Ausweg stellen künstlich hergestellte Materialien dar, deren Gitterkonstanten effektiv größer sind, wie z.B. Systeme aus zwei überlagerten Schichten aus Graphen und Bornitrid.

Die Experimente des Münchner Wissenschaftlerteams folgen einem alternativen Ansatz. Hier werden starke Magnetfelder künstlich erzeugt, indem ultrakalte Atome speziell angelegten Laserfeldern ausgesetzt werden. Das untersuchte Quantensystem besteht aus Rubidium-Atomen, die mithilfe von stehenden Wellen in periodischen Strukturen gefangen werden. „Die Atome können sich nur in Bereichen hoher Lichtintensitäten aufhalten und ordnen sich daher in einer 2D Struktur an, die sich anschaulich mit der Form eines Eierkarton vergleichen lässt.“, erklärt Monika Aidelsburger, eine Physikerin im Team von Prof. Bloch. „Die Laserstrahlen übernehmen die Rolle des Ionenkristalls und die Atome die der Elektronen.“

Einen Haken gibt es dabei jedoch: da die Atome elektrisch neutral sind, erfahren sie auch in einem externen Magnetfeld keine Lorentz-Kraft, die sie auf kreisförmige Bahnen zwingt. Die Aufgabe bestand darin, mit einer neuen Technik diesen Effekt der Lorentz-Kraft für neutrale Teilchen nachzuahmen. Eine Verknüpfung aus Verkippen und gleichzeitigem Schütteln des Gitters mithilfe zweier zusätzlicher Laserstrahlen hatte die gewünschte Wirkung: die Atome bewegten sich im Gitter auf zyklotron-ähnlichen Bahnen, so wie geladene Teilchen in einem externen Magnetfeld. Auf diesem Weg gelang es dem Team künstliche Magnetfelder zu erzeugen, die stark genug sind um die Quantenphänomene im Bereich des Hofstadter-Schmetterlings zu untersuchen.

Zusätzlich gelang es den Wissenschaftlern den sogenannten Spin-Hall-Effekt zu beobachten: zwei Teilchen mit entgegengesetztem Spin spüren ein Magnetfeld derselben Stärke, jedoch mit jeweils entgegengesetzter Richtung. Infolgedessen sind auch die Richtung der Lorentz-Kraft und die Zyklotron-Bewegung für die beiden Spins entgegengesetzt. Die beiden Spin-Zustände werden in diesen Experimenten durch zwei verschiedene Zustände der Rubidium Atome realisiert.

In zukünftigen Experimenten könnte diese Methode dazu dienen die komplexe Physik des Hofstadter-Modells mithilfe des defektfreien und gut kontrollierbaren Systems von ultrakalten Atomen in optischen Gittern experimentell zu untersuchen. Die direkte Beobachtung der mikroskopischen Bewegung der Teilchen im Gitter mit neuen experimentellen Techniken wie z. B. dem Quantengas-Mikroskop könnte zu einem besseren Verständnis von Materialeigenschaften führen. Darüber hinaus könnte die neue Methode auch den Weg bereiten für die Entdeckung und Erforschung neuer Quantenphasen von Materialien unter extremen experimentellen Bedingungen. [M.A].

Originalveröffentlichung:

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices

Physical Review. Letters 111, 185301 (2013)

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0) 89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de
M.Sc. Monika Aidelsburger
LMU München
Telefon: +49 89 2180 6119
E-Mail: monika.aidelsburger@physik.uni-muenchen.de
Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Telefon: +34 91 299 9862
E-Mail: belen.paredes@csic.es

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de/media/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise