Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtinduzierte magnetische Wellen in atomar maßgeschneiderten Materialien

07.07.2015

Wissenschaftler erforschen grenzflächenüberschreitende, ultraschnelle Kontrolle von Magnetismus: Eine neue Studie zeigt auf wie die schlagartige Anregung von Gitterschwingungen in einem Kristall die magnetischen Eigenschaften einer atomar dünnen Schicht, die auf seiner Oberfläche aufliegt, verändern kann.

Eine Gruppe von Forschern unter der Leitung von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg, der University of Oxford und der Université de Genève entdeckte mit Hilfe von extrem kurzen Röntgenpulsen eines Freie-Elektronen-Lasers, dass die vorhandene magnetische Ordnung in der dünnen Schicht zunächst an ihrer Grenzfläche zum Substrat „aufschmilzt“ und sich dieses Schmelzen auf ultrakurzen Zeitskalen fortschreitend in das Innere des Films ausbreitet. Die Ergebnisse sind online in der Fachzeitschrift Nature Materials vorgestellt.


Dieses Bild zeigt die magnetische Ordnung, d.h. die antiparallele Anordnung der Spins, im NdNiO3-Film, der auf einem LaAlO3-Substratkristall aufgebracht ist. Ein kurzer mittelinfraroter Laserpuls löst Schwingungen im Substrat aus, dargestellt durch die verschmierten, roten Sauerstoffatome. Diese Atombewegung führt zu einem Schmelzen der magnetischen Ordnung im Film, welches an der Grenzfläche zwischen den beiden Materialien beginnt und sich fortschreitend ins Innere des Films ausbreitet. J.M. Harms, MPSD

Übergangsmetalloxide wie Manganite, Kuprate oder Nickelate haben unter Wissenschaftlern sehr viel Aufmerksamkeit erregt, da ihre elektrischen und magnetischen Eigenschaften bereits durch kleinste Veränderungen äußerer Parameter wie Temperatur und elektrische oder magnetische Felder verändert werden können.

„Aber es gibt auch eine starke Korrelation zwischen der Anordnung der Atome im Kristallgitter und diesen Eigenschaften, so dass gezielte Strukturveränderungen es ermöglichen, den elektronischen und magnetischen Zustand dieser Materialien zu manipulieren“, sagte Michael Först, Wissenschaftler am Max-Planck-Institut und einer der federführenden Autoren dieser Arbeit.

In den letzten Jahren haben Forscher begonnen sogenannte Heterostrukturen zu untersuchen, die aus verschiedenen Oxidmaterialien aufgebaut sind. Die Eigenschaften eines atomar dünnen Oxidfilms auf einem Substrat können sich stark von denen des gleichen Materials als Volumenkörper unterscheiden. Dies liegt an verschiedensten Grenzflächeneffekten, unter anderem an der mechanischen Verspannung, die zwischen dem Substrat und dem Film entsteht.

Dies macht Heterostrukturen aus diesen komplexen Materialien zu einem vielseitigen Werkzeug, um Eigenschaften von Materialien und Bauelementen maßzuschneidern. „In der vorliegenden Arbeit haben wir die Möglichkeit untersucht, die Eigenschaften eines dünnen Films dynamisch zu kontrollieren, indem wir die atomare Struktur des Substrats mit Licht verändert haben“, sagte Andrea Caviglia, der mittlerweile am Kavli Institute of Nanoscience an der TU Delft tätig ist.

Bei sehr tiefen Temperaturen ist Neodymnickelat (NdNiO3) ein antiferromagnetischer Isolator, d.h. die Spins der Valenzelektronen ordnen sich in einem antiparallelen Muster an, so dass sich keine makroskopische Magnetisierung ergibt. Oberhalb der Temperatur von 200 K wird dieses Material ein Metall und gleichzeitig verschwindet die antiferromagnetische Anordnung der Spins.

Wenn ein NdNiO3-Film epitaktisch auf ein Lanthanaluminat- (LaAlO3-)Substrat aufgewachsen wird, führen die leicht unterschiedlichen Gitterkonstanten der beiden Materialien zu einer statischen Verspannung innerhalb des Films, die zu einer Verringerung der Isolator-Metall-Übergangstemperatur von 200 K auf etwa 130 K führt.

Interessanterweise können die elektrischen Eigenschaften des NdNiO3-Films auf ultraschnellen Zeitskalen verändert werden, indem Gitterschwingungen im LaAlO3-Substrat angeregt werden. Dies wurde in einer früheren Veröffentlichung der Hauptautoren in der Fachzeitschrift Physical Review Letters gezeigt. „In jenem Experiment hat ein Laserpuls mit einer Wellenlänge von 15 µm, also im mittleren Infrarotbereich, eine Schwingungsmode im Substrat ausgelöst. Im Nickelatfilm haben wir dann eine drastische Veränderung der elektrischen Leitfähigkeit beobachtet, indem wir die Reflektivität der Probe mit einem Terahertz-Puls, das heißt mit einem Puls im Ferninfrarotbereich, vermessen haben“, sagte Caviglia.

In der aktuellen Arbeit untersuchte die Gruppe welchen Effekt diese Substratanregung auf die magnetischen Eigenschaften des Nickelatfilms hat. Um diese Veränderungen mit hoher räumlicher und zeitlicher Auflösung zu messen, verwendete das Team die sogenannte zeitaufgelöste Röntgenbeugung an der Linac Coherent Light Source (LCLS), einem Freie-Elektronen-Laser am US-Forschungszentrum SLAC in Kalifornien.

Die Femtosekunden-Röntgenpulse der LCLS werden von dem Film gebeugt und tragen mit einem Zeitstempel versehene Signaturen der Spin-Anordnung des Materials, welche von den Physikern dann benutzt wurden, um die räumlich-zeitliche magnetische Dynamik zu rekonstruieren.

Zunächst fanden die Wissenschaftler, dass die magnetische Ordnung auf der Zeitskala weniger Pikosekunden schmilzt, d.h. auf derselben Zeitskala wie der bereits früher beobachtete Isolator-Metall-Übergang. Dies suggeriert, dass die beiden Prozesse zusammenhängen.

„Noch bemerkenswerter ist aber die Beobachtung des Beugungsexperimentes, dass das magnetische Schmelzen im Nickelat örtlich begrenzt an der Grenzfläche zum Substrat beginnt und sich von dort, vergleichbar mit einer Welle, in den NdNiO3-Film hinein ausbreitet“, sagte Först. „Die hohe Geschwindigkeit, mit der sich diese Wellenfront ausbreitet, legt nahe, dass diese Dynamik durch lokale Veränderungen der elektronischen Struktur an der Grenzfläche angetrieben wird“, fügte er hinzu.

Tatsächlich wird dieses Bild von einem theoretischen Modell unterstützt, dass die Erzeugung frei beweglicher Ladungsträger an der Heterogrenzfläche durch die Gitterschwingungen des Substrats annimmt. Diese Ladungen bringen wahrscheinlich die antiferromagnetische Ordnung durcheinander während sie sich in den Film hinein ausbreiten.

Diese Arbeit wurde durch den ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) ermöglicht, welcher Wissenschaftler der zu Beginn genannten Forschungseinrichtungen zusammenbringt. Weitere beteiligte Institutionen sind die Diamond Light Source, das Brookhaven National Laboratory, das Lawrence Berkeley National Laboratory, das Stanford Linear Accelerator Center und die National University of Singapore. Das CFEL ist eine Kooperation von DESY, Max-Planck-Gesellschaft und Universität Hamburg.

Ansprechpartner:

Dr. Michael Först
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5360
michael.foerst@mpsd.mpg.de

Originalpublikation:

M. Först, A. D. Caviglia, R. Scherwitzl, R. Mankowsky, P. Zubko, V. Khanna, H. Bromberger, S. B.Wilkins, Y.-D. Chuang, W. S. Lee, W. F. Schlotter, J. J. Turner, G. L. Dakovski, M. P. Minitti, J. Robinson, S. R. Clark, D. Jaksch, J.-M. Triscone, J. P. Hill, S. S. Dhesi, and A. Cavalleri, "Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface", Nature Materials, 2015; DOI: 10.1038/nmat4341

Weitere Informationen:

http://dx.doi.org/10.1038/nmat4341 Originalpublikation
http://qcmd.mpsd.mpg.de/ Forschungsgruppe von Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie