Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtgesteuerte Molekülveränderungen verstanden: RUB-Forscher berichten in Angewandte Chemie

12.05.2010
Computersimulationen eröffnen Weg zum gezielten Design von Nano-Instrumenten

Lichtinduzierte Molekülveränderungen werden bereits in technischen Anwendungen wie LCD-Displays und Speichermedien genutzt. Um ihre Effizienz zu steigern, ist ein genaues Verständnis der Vorgänge auf molekularer Ebene notwendig, das bisher unvollständig war.

Theoretische Chemiker und Physiker der Ruhr-Universität Bochum und vom King’s College London haben jetzt mit Computersimulationen den genauen Ablauf lichtinduzierter Molekülveränderungen nachvollzogen und Einblicke in die Details des Umschaltprozesses gewonnen.

Sie eröffnen die Möglichkeit eines gezielten chemischen Designs von Licht-kontrollierbaren nanotechnologischen Instrumenten. Dr. Marcus Böckmann, Prof. Dr. Dominik Marx (RUB) und Dr. Nikos Doltsinis (King’s College) berichten in der aktuellen Ausgabe von Angewandte Chemie.

Lichtfarbe lässt das Molekül umschalten

Gegenstand der Computersimulation auf Basis der Gesetze der Quantenmechanik war chemisch verändertes Azobenzol. Das Azobenzol-Molekül kann zwei verschiedene Formen einnehmen und zwischen ihnen wechseln – ausgelöst von der Bestrahlung mit Licht in verschiedenen Farben. Die Forscher ließen den Umschaltprozess zwischen den beiden möglichen Molekülformen im Detail im Computer ablaufen und erzielten so einmalige Einblicke in atomarer Auflösung. „Für alle Anwendungen ist es bedeutend, dass der lichtinduzierte Umschaltprozess schnell und effizient abläuft“, erklärt Dr. Marcus Böckmann. „In letzter Zeit haben Experimente gezeigt, dass bestimmte chemische Veränderungen von Azobenzol diesen Prozess wesentlich verbessern können.“ Bislang waren die Gründe für diese Verbesserungen allerdings nicht verstanden. Die Computersimulation konnte nun erstmals die Ergebnisse der Experimente erklären. „Wir konnten einen klaren Zusammenhang zwischen der Struktur und den Umschalteigenschaften des Moleküls belegen“, berichten die Forscher. Das ist ein entscheidender Schritt hin zum gezielten chemischen Design von Azobenzol-basierten lichtgetriebenen nanotechnologischen Instrumenten und somit der Entwicklung von verbesserten lichtgesteuerten Materialien.

Titelaufnahme

Marcus Böckmann, Nikos L. Doltsinis and Dominik Marx: Unraveling a Chemically Enhanced Photoswitch: Bridged Azobenzene. In: 'Angewandte Chemie', Int. Ed. 2010, 49, 3382 –3384. DOI: 10.1002/ange.200907039, http://www3.interscience.wiley.com/cgi-bin/fulltext/123329687/PDFSTART

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, E-Mail: dominik.marx@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www3.interscience.wiley.com/cgi-bin/fulltext/123329687/PDFSTART

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie