Lichtdesign im Physiklabor – Dank DNA-Origami sichtbares Licht maßgeschneidert verändern

Er gibt Auskunft darüber, in welche Richtung die Polarisation eines Lichtstrahles gedreht wird, wenn er durch eine Lösung mit Milchsäure geleitet wird. Die Drehung des Polarisationswinkels sowie die Veränderung der Lichtintensität und Farbe charakterisieren aber nicht nur Joghurt, sondern jede lösliche Substanz.

In Analogie zu dieser natürlich auftretenden „optischen Aktivität“ hat ein internationales Team unter der Leitung des LMU-Physikers Professor Tim Liedl jetzt ein künstliches, dreidimensionales Material hergestellt, mit dem sichtbares Licht maßgeschneidert modifiziert werden kann. Dieses sogenannte „Metamaterial“ besteht aus künstlichen DNA-Stücken, die sich von alleine – mit Hilfe der sogenannten DNA-Origami-Methode – in gewünschte Strukturen falten und die dicht mit Goldnanopartikeln in einer helikalen Anordnung besetzt sind.

Über die Modifikation bestimmter Parameter im Material lässt sich das Lichtdesign gezielt beeinflussen. Dieser Ansatz könnte den Weg zu neuartigen Linsensystemen eröffnen. Die Studie wurde im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) durchgeführt.

(Nature online, 14. März 2012)

Mit Hilfe der DNA-Origami-Methode können die Wissenschaftler die Grundstruktur des Materials vorprogrammieren. Sie nutzen dazu den charakteristischen Aufbau von DNA, die aus vier verschiedenen Bausteinen besteht, von denen jeweils zwei aneinander binden. Durch geeignetes Design vieler aneinander bindender DNA-Sequenzen entsteht ein dreidimensionales Objekt beliebiger Form. In ihren Experimenten wählten die Physiker eine Helix, an die sich – über spezifische Bindestellen – mit geringem Abstand nur rund zehn Nanometer große Goldpartikel wie an einer Perlenkette aufreihen. „Die Präzision und Ausbeute der Strukturen ist außergewöhnlich hoch und besser kontrolliert als bei allen früheren Versuchen, metallische Nanopartikel durch DNA-Selbstorganisation in einer definierten Geometrie anzuordnen“, erläutert Professor Friedrich Simmel, Co-Autor und Physiker an der TU München.

Variieren die Physiker die Anordnung, Größe, Beschaffenheit der Goldpartikel oder andere Eigenschaften der in Wasser gelösten Strukturen, verändern sich die optische Aktivität des Materials und somit die Eigenschaften des austretenden Lichtstrahls. Dabei wird zum einen unterschieden, ob sich die Goldpartikel linksgängig oder rechtsgängig um die DNA-Struktur anordnen. Zum anderen konnten die Wissenschaftler feststellen, dass die Intensität der optischen Antwort mit der Größe der Partikel deutlich ansteigt. Großen Einfluss hat zudem die chemische Zusammensetzung der Partikel. Waren die Goldpartikel mit einer Silberschicht überzogen, verschob sich die optische Resonanz vom roten in den kurzwelligeren blauen Bereich.

Der sogenannte zirkulare Dichroismus ist eine wichtige Kenngröße, die über zwei zirkular polarisierte Lichtstrahlen mit definierter Wellenlänge bestimmt wird. Weil ein Lichtstrahl einen positiven, der andere einen negativen Drehsinn hat, werden sie im Material unterschiedlich moduliert. In einer Messreihe bei verschiedenen Wellenlängen ergeben sich materialspezifische Werte, die in der vorliegenden Studie mit vorab berechneten Werten übereinstimmten. Anhand von theoretischen Berechnungen lassen sich die Materialparameter nun so einrichten, dass das „Wunsch-Licht“ entsteht. „Wir werden jetzt prüfen, ob wir auch den Brechungsindex der von uns hergestellten Materialien beeinflussen können“, sagt Liedl. „Materialien mit negativem Brechungsindex könnten zum Beispiel für die Entwicklung neuartiger optischer Linsensysteme genutzt werden.“ (NIM/suwe)

Publikation:
DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Anton Kuzyk, Robert Schreiber, Zhiyuan Fan, Günther Pardatscher, Eva-Maria Roller, Alexander Högele, Friedrich C. Simmel, Alexander O. Govorov und Tim Liedl.

Nature Volume 482, 7389, pp 311-314 DOI: 10.1038/nature10889

Ansprechpartner:
Prof. Dr. Tim Liedl
Department für Physik – Lehrstuhl Rädler
Ludwig-Maximilians-Universität
Geschwister-Scholl-Platz 1
80539 München, Germany
Tel: +49 89 2180-3725
Fax: +49 89 2180-3182
E-Mail: tim.liedl@physik.lmu.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer