Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblitze aus einem fliegenden Spiegel

24.04.2013
Ein internationales Physikerteam modifiziert erstmals Laserpulse mit Hilfe eines mit nahezu Lichtgeschwindigkeit fliegenden Spiegels aus Elektronen.

Beschleunigt man eine dichte Schicht von Elektronen auf nahezu Lichtgeschwindigkeit, so werden sie zu einer spiegelnden Oberfläche, an der man Lichtstrahlung umwandeln kann.


Ein Laserpuls (rot, von unten kommend), beschleunigt Elektronen (grün), die aus einer dünnen Folie aus Kohlenstoffatomen stammen. Auf die dann mit fast Lichtgeschwindigkeit fliegenden Elektronen trifft ein weiterer infraroter Lichtpuls. Dieser wird anschließend als Lichtblitz im extremen ultravioletten Bereich des Lichts von den Teilchen reflektiert und dauert nur noch Attosekunden. Grafik: Thorsten Naeser

Das hat erstmals ein internationales Team aus Physikern vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching, der Ludwig-Maximilians-Universität (LMU) München, der Queens University Belfast (QUB) und dem Rutherford Appleton Laboratorium in Oxford (Großbritannien) experimentell bewiesen. Die Physiker beschleunigten mit einem Laserpuls Elektronen aus einer Nanometer dünnen Folie fast bis auf Lichtgeschwindigkeit. Anschließend reflektierten sie an diesen Elektronen einen zweiten Lichtpuls.

Damit haben die Forscher erstmals eine von Albert Einstein im Jahr 1905 aufgestellte Theorie experimentell realisiert, wonach ein sich sehr schnell bewegender Spiegel die auf ihn auftreffende elektromagnetische Strahlung zu kürzeren Wellenlängen verschiebt. Die Forscher berichten darüber im Fachmagazin „Nature Communications, 23. April 2013.

Spiegelnde Flächen ruhen meist in sich selbst; man denke an den eigenen Badezimmerspiegel oder eine glatte Oberfläche eines Sees. Was passiert nun, wenn man einen Spiegel konstruiert, der sich fast mit Lichtgeschwindigkeit bewegt? Diese Gedankengänge beschäftigen schon Albert Einstein im Jahr 1905 in seiner Veröffentlichung „Zur Elektrodynamik bewegter Körper“. Experimentell auf den Grund gegangen ist dieser Frage nun ein internationales Team, dem Wissenschaftler vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität angehörten.

An dem Rutherford Appleton Laboratorium in Oxford schickten die Physiker einen rund 50 Femtosekunden kurzen, hochintensiven Laserimpuls auf eine dünne Folie aus Kohlenstoffatomen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Photonen (Lichtteilchen) dieses Pulses schlugen aus den Atomen eine dichte Lage aus Elektronen heraus und beschleunigten sie innerhalb eines Mikrometers auf nahezu Lichtgeschwindigkeit. Damit hatten die Physiker einen so genannten relativistischen Spiegel erschaffen. „Der Spiegel war nur für wenige Femtosekunden stabil“, erklärt Daniel Kiefer, der über das Experiment seine Doktorarbeit schrieb. Während dieser extrem kurzen Lebensdauer des Spiegels, ließen die Physiker einen zweiten Femtosekunden-Lichtpuls von der entgegengesetzten Seite auf die rasende Elektronenwand auftreffen. Dieser Puls bestand aus Nahem Infraroten Licht (800 Nanometer Wellenlänge) und dauerte ebenfalls nur wenige Femtosekunden.

Während gewöhnliche Spiegel nun das einfallende Licht unverändert reflektieren, wandelt ein Spiegel, der mit nahezu Lichtgeschwindigkeit fliegt, das auftreffende Licht um. Dabei überträgt der Spiegel den Impuls auf die Photonen (Lichtteilchen) - analog zu einem Ball der durch das Abprallen von einem entgegenkommenden Schläger zu einer höheren Geschwindigkeit getrieben wird. Da sich die Photonen aber schon mit Lichtgeschwindigkeit bewegen, werden sie zu höheren Frequenzen verschoben, ähnlich wie beim Dopplereffekt eines vorbeifahrenden Krankenwagens, dessen Sirene man höher (lauter) bzw. tiefer (leiser) hört, je nachdem ob er auf einen zukommt oder wegfährt. Bei dem Experiment bewirkte die enorme Geschwindigkeit des Spiegels, dass sich das einfallende infrarote Licht umwandelte in extremes, ultraviolettes Licht mit Wellenlängen zwischen 60 bis 80 Nanometer. Ebenso verkürzte sich die Zeitdauer der reflektierten Lichtblitze auf die Größenordnung von einigen 100 Attosekunden (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde).

Mit ihren Experimenten haben die Wissenschaftler damit nicht nur einen Gedankengang von Albert Einstein experimentell untermauert, sondern auch einen neuen Weg gefunden, Attosekunden-Lichtblitze zu produzieren. Mit solchen Lichtblitzen ist man wiederum in der Lage, Elektronen zu fotografieren, die sich innerhalb solch unvorstellbar kurzen Zeitspannen in Atomen bewegen und damit die noch weitgehend unbekannten, elementarsten Vorgänge in der Natur zu beobachten.

„Mit unseren Experimenten haben wir vorerst nur bewiesen, dass die Theorie auch in der Praxis funktioniert“, erklärt Jörg Schreiber. Für Schreiber und sein Team an der LMU ist das erst der Anfang: „Unsere Lasersysteme werden künftig in der Lage sein, immer leistungsstärkere Pulse mit höheren Wiederholungsraten und kürzerer Dauer zu generieren“, sagt Schreiber. Damit werden auch die auf diesem Weg erzeugten Attosekunden-Lichtblitze intensiver, kurzwelliger und damit immer besser geeignet sein, den Mikrokosmos zu erforschen. „Der relativistische Spiegel bietet also noch ein enormes Potential“, ist sich Schreiber sicher. Thorsten Naeser
Originalpublikation:
D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. S. Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf & B. Dromey
Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.
Nature Communications, DOI: 10.1038/ncomms2775, 23. April 2013.

Weitere Informationen erhalten Sie von:

Dr. Daniel Kiefer
Ludwig-Maximilians-Universität München
Fakultät für Physik, Am Coulombwall 1
85748 Garching
Tel.: +49 (0) 89 / 289-54 023
E-Mail: daniel.kiefer@mpq.mpg.de

Prof. Dr. Jörg Schreiber
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 / 289-54 025
E-Mail: joerg.schreiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie