Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblitze aus einem fliegenden Spiegel

24.04.2013
Ein internationales Physikerteam modifiziert erstmals Laserpulse mit Hilfe eines mit nahezu Lichtgeschwindigkeit fliegenden Spiegels aus Elektronen.

Beschleunigt man eine dichte Schicht von Elektronen auf nahezu Lichtgeschwindigkeit, so werden sie zu einer spiegelnden Oberfläche, an der man Lichtstrahlung umwandeln kann.


Ein Laserpuls (rot, von unten kommend), beschleunigt Elektronen (grün), die aus einer dünnen Folie aus Kohlenstoffatomen stammen. Auf die dann mit fast Lichtgeschwindigkeit fliegenden Elektronen trifft ein weiterer infraroter Lichtpuls. Dieser wird anschließend als Lichtblitz im extremen ultravioletten Bereich des Lichts von den Teilchen reflektiert und dauert nur noch Attosekunden. Grafik: Thorsten Naeser

Das hat erstmals ein internationales Team aus Physikern vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching, der Ludwig-Maximilians-Universität (LMU) München, der Queens University Belfast (QUB) und dem Rutherford Appleton Laboratorium in Oxford (Großbritannien) experimentell bewiesen. Die Physiker beschleunigten mit einem Laserpuls Elektronen aus einer Nanometer dünnen Folie fast bis auf Lichtgeschwindigkeit. Anschließend reflektierten sie an diesen Elektronen einen zweiten Lichtpuls.

Damit haben die Forscher erstmals eine von Albert Einstein im Jahr 1905 aufgestellte Theorie experimentell realisiert, wonach ein sich sehr schnell bewegender Spiegel die auf ihn auftreffende elektromagnetische Strahlung zu kürzeren Wellenlängen verschiebt. Die Forscher berichten darüber im Fachmagazin „Nature Communications, 23. April 2013.

Spiegelnde Flächen ruhen meist in sich selbst; man denke an den eigenen Badezimmerspiegel oder eine glatte Oberfläche eines Sees. Was passiert nun, wenn man einen Spiegel konstruiert, der sich fast mit Lichtgeschwindigkeit bewegt? Diese Gedankengänge beschäftigen schon Albert Einstein im Jahr 1905 in seiner Veröffentlichung „Zur Elektrodynamik bewegter Körper“. Experimentell auf den Grund gegangen ist dieser Frage nun ein internationales Team, dem Wissenschaftler vom Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität angehörten.

An dem Rutherford Appleton Laboratorium in Oxford schickten die Physiker einen rund 50 Femtosekunden kurzen, hochintensiven Laserimpuls auf eine dünne Folie aus Kohlenstoffatomen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Photonen (Lichtteilchen) dieses Pulses schlugen aus den Atomen eine dichte Lage aus Elektronen heraus und beschleunigten sie innerhalb eines Mikrometers auf nahezu Lichtgeschwindigkeit. Damit hatten die Physiker einen so genannten relativistischen Spiegel erschaffen. „Der Spiegel war nur für wenige Femtosekunden stabil“, erklärt Daniel Kiefer, der über das Experiment seine Doktorarbeit schrieb. Während dieser extrem kurzen Lebensdauer des Spiegels, ließen die Physiker einen zweiten Femtosekunden-Lichtpuls von der entgegengesetzten Seite auf die rasende Elektronenwand auftreffen. Dieser Puls bestand aus Nahem Infraroten Licht (800 Nanometer Wellenlänge) und dauerte ebenfalls nur wenige Femtosekunden.

Während gewöhnliche Spiegel nun das einfallende Licht unverändert reflektieren, wandelt ein Spiegel, der mit nahezu Lichtgeschwindigkeit fliegt, das auftreffende Licht um. Dabei überträgt der Spiegel den Impuls auf die Photonen (Lichtteilchen) - analog zu einem Ball der durch das Abprallen von einem entgegenkommenden Schläger zu einer höheren Geschwindigkeit getrieben wird. Da sich die Photonen aber schon mit Lichtgeschwindigkeit bewegen, werden sie zu höheren Frequenzen verschoben, ähnlich wie beim Dopplereffekt eines vorbeifahrenden Krankenwagens, dessen Sirene man höher (lauter) bzw. tiefer (leiser) hört, je nachdem ob er auf einen zukommt oder wegfährt. Bei dem Experiment bewirkte die enorme Geschwindigkeit des Spiegels, dass sich das einfallende infrarote Licht umwandelte in extremes, ultraviolettes Licht mit Wellenlängen zwischen 60 bis 80 Nanometer. Ebenso verkürzte sich die Zeitdauer der reflektierten Lichtblitze auf die Größenordnung von einigen 100 Attosekunden (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde).

Mit ihren Experimenten haben die Wissenschaftler damit nicht nur einen Gedankengang von Albert Einstein experimentell untermauert, sondern auch einen neuen Weg gefunden, Attosekunden-Lichtblitze zu produzieren. Mit solchen Lichtblitzen ist man wiederum in der Lage, Elektronen zu fotografieren, die sich innerhalb solch unvorstellbar kurzen Zeitspannen in Atomen bewegen und damit die noch weitgehend unbekannten, elementarsten Vorgänge in der Natur zu beobachten.

„Mit unseren Experimenten haben wir vorerst nur bewiesen, dass die Theorie auch in der Praxis funktioniert“, erklärt Jörg Schreiber. Für Schreiber und sein Team an der LMU ist das erst der Anfang: „Unsere Lasersysteme werden künftig in der Lage sein, immer leistungsstärkere Pulse mit höheren Wiederholungsraten und kürzerer Dauer zu generieren“, sagt Schreiber. Damit werden auch die auf diesem Weg erzeugten Attosekunden-Lichtblitze intensiver, kurzwelliger und damit immer besser geeignet sein, den Mikrokosmos zu erforschen. „Der relativistische Spiegel bietet also noch ein enormes Potential“, ist sich Schreiber sicher. Thorsten Naeser
Originalpublikation:
D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. S. Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf & B. Dromey
Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.
Nature Communications, DOI: 10.1038/ncomms2775, 23. April 2013.

Weitere Informationen erhalten Sie von:

Dr. Daniel Kiefer
Ludwig-Maximilians-Universität München
Fakultät für Physik, Am Coulombwall 1
85748 Garching
Tel.: +49 (0) 89 / 289-54 023
E-Mail: daniel.kiefer@mpq.mpg.de

Prof. Dr. Jörg Schreiber
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0) 89 / 289-54 025
E-Mail: joerg.schreiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie