Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblick in die Vergangenheit

04.12.2008
Wissenschaftler unter Leitung des Max-Planck-Instituts für Astronomie in Heidelberg haben die Natur einer berühmten Supernova aufgeklärt: Lichtechos erlaubten es, eine im 16. Jahrhundert vom dänischen Astronomen Tycho Brahe und dessen Zeitgenossen beobachtete Sternexplosion erneut zu untersuchen und spektroskopisch zu klassifizieren.

Demnach handelt es sich bei Tychos Supernova um die thermonukleare Explosion eines weißen Zwergsterns. Das Ergebnis führt zu einem genaueren Verständnis dieser kosmischen Katastrophen, die wesentlich zur Entstehung schwerer Elemente, etwa Eisen, beitragen und als wichtige Entfernungsmarken im Universum dienen. (Nature, 4. Dezember 2008)

Im Herbst des Jahres 1572 erschien ein neuer Stern am Himmel. Das Objekt leuchtete heller als alle anderen sichtbaren Sterne und verschwand schließlich wieder im April 1574 - nicht jedoch, ohne das Weltbild der damaligen Zeit nachhaltig zu verändern: Der dänische Astronom Tycho Brahe schloss durch präzise Positionsbestimmungen, dass der neue Stern deutlich weiter von der Erde entfernt sein müsse als der Mond. Dies stand in krassem Widerspruch zum damaligen Weltbild nach Aristoteles, wonach die translunare Welt - einschließlich der Sphäre der Fixsterne - als unveränderlich und ewig galt.

Tychos Supernova legte einen der Grundsteine für die umwälzenden Veränderungen des Weltbilds im ausklingenden Mittelalter, die von Tycho Brahe, Kepler, Galilei und anderen fortgesetzt wurden. Doch die Beobachter des 16. Jahrhunderts wussten nicht, mit welcher Art von Objekt sie es hier zu tun hatten. Durch einen Beobachtungstrick mithilfe eines interstellaren "Spiegels" konnte nun ein internationales Forscherteam unter Leitung von Oliver Krause am Max-Planck-Institut für Astronomie den von Tycho Brahe beobachteten Lichtausbruch nochmals detailliert untersuchen.

Als ein Stern vor mehr als 11.000 Jahren explodierte, sandte er sein helles Licht nach allen Richtungen aus. Dieses Licht passierte die Erde im Jahr 1572 und war danach zunächst auf ewig verloren. Nun gelang eine "posthume" Spektroskopie der längst verblassten Supernova, weil die Astronomen mit Teleskopen des Calar Alto Observatoriums (Deutsch-Spanisches Astronomisches Zentrum in Andalusien) mehrere kurzlebige Reflexe des damaligen Lichtblitzes an Staub- und Gaswolken in der weiteren Umgebung der Sternexplosion ausmachen konnten: Der Umweg einiger Lichtbündel über die Reflexion an diesen Wolken hatte aufgrund der endlichen Geschwindigkeit des Lichts zu derartigen Verzögerungen geführt, dass sie die Erde erst heute, nach 436 Jahren, erreichen.

So wurden die Forscher erneut Zeugen des damaligen Geschehens. Und sie analysierten das Licht der Supernova von 1572 mit modernen spektroskopischen Methoden des 21. Jahrhunderts. Dabei stellte sich heraus, dass das abgeworfene Material keinen Wasserstoff, jedoch Silizium und Eisen enthält, deren Linien im Spektrum der Supernova erscheinen.

Diese Beobachtung ermöglicht jetzt die sichere Klassifikation der Sternexplosion. Es handelte sich um eine Supernova vom Typ Ia. Dabei wird die Masse eines weißen Zwergsterns durch Material-Transfer von einem Begleitstern über eine kritische Grenze hinaus getrieben. Beim Überschreiten dieser Grenzmasse "kriegt" der Zwergstern "zu viel": Er kollabiert, und in der Folge zündet eine thermonukleare Explosion, die ihn vollständig zerstört. Gas und Staub entfernen sich mit vielen Tausend Kilometern pro Sekunde in alle Richtungen und geraten in heftige Wechselwirkung mit der interstellaren Materie der Umgebung. Das dabei entstehende hochgradig angeregte und deshalb hell leuchtende Gemisch aus stellarer und interstellarer Materie bildet den Supernova-Überrest.

Das jetzt gewonnene Spektrum zeigt bisher unbekannte Details der Explosion. So besitzt ein Teil des abgeworfenen Materials eine deutlich höhere Raumgeschwindigkeit als der Rest, was auf eine nicht kugelsymmetrische Explosion hindeutet. Dieser Befund legt wichtige Randbedingung für Modellrechnungen der Explosion fest. Aufgrund ihrer konstanten Leuchtkraft werden Supernovae vom Typ Ia als Entfernungsindikatoren im Universum eingesetzt. Mit ihrer Hilfe haben Wissenschaftler vor einiger Zeit auf die Existenz der Dunklen Energie geschlossen. Supernovae vom Typ Ia gelten auch als Hauptproduzenten schwerer Elemente.

Trotz der zentralen Rolle dieser Explosionen weist unser Wissen um sie weiterhin Lücken auf. Alle bisher direkt beobachteten Supernovae vom Typ Ia lagen in fernen Galaxien. Tychos Supernova gewinnt nun den Rang einer heute beobachteten Supernova in unserer eigenen Milchstraße. Die aktuellen Befunde werfen neues Licht auf das umfangreiche, im Lauf der Jahrzehnte aus dem berühmten Überrest dieser Sternexplosion gewonnene Datenmaterial. Dies wird zu einem besseren Verständnis solcher Objekte beitragen. Zukünftige Beobachtungen weiterer Lichtechos sollten es auch ermöglichen, erstmals dreidimensionale Ansichten einer Supernova-Explosion zu rekonstruieren.

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de/IRSPACE/Tycho_release/index.html
http://www.mpg.de/bilderBerichteDokumente/dokumentation/jahrbuch/2007/astronomie/forschungsSchwerpunkt/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise