Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht streut Licht

11.01.2010
Max-Planck-Forscher schlagen ein Konzept vor, um mit Laserstrahlen einen Doppelspalt zu erzeugen

Ein Doppelspalt - darunter verstanden Physiker bislang eine Wand mit zwei Längsschlitzen, die mit Licht bestrahlt oder mit Teilchen beschossen werden. Physiker vom Heidelberger Max-Planck-Institut für Kernphysik stellen jedoch ein Konzept für ein Experiment vor, das ganz ohne Materie auskommt: Zwei extrem intensive, fast parallele Laserstrahlen werden so fokussiert, dass die Brennpunkte ganz nahe beieinander liegen. Für einen dritten Laserstrahl, der aus der entgegen gesetzten Richtung kommt, wirken die beiden Brennpunkte dann wie ein Doppelspalt: Auf einem dahinter aufgestellten Schirm ist das charakteristische Interferenzbild mit hellen und dunklen Steifen zu sehen. (Nature Photonics, 10. Januar 2010)


Ein Spalt aus Licht: Die Brennpunkte zweier extrem intensiver Laserstrahlen wirken wie ein Doppelspalt. Ein dritter Laser, der durch sie hindurch läuft, erzeugt auf dem Schirm im Hintergrund ein Interferenzmuster
MPI für Kernphysik

Das Doppelspalt-Experiment, ein Klassiker unter den physikalischen Experimenten, ist auf viele verschiedene Arten möglich: mit Licht, mit Elektronen, mit Neutronen, mit Fullerenen und so weiter. Eines haben bislang alle Varianten gemeinsam: Materie ist im Spiel. Sei es weil die Versuchsobjekte aus Materie sind, beispielsweise Neutronen oder Fulleren-Moleküle, sei es, weil die Versuchsaufbauten aus Materie bestehen. Die Physiker um Antonino Di Piazza und Christoph H. Keitel vom Heidelberger Max-Planck-Institut für Kernphysik schlagen jetzt etwas Neues vor: ein materieloses Doppelspaltexperiment.

Den Doppelspalt bilden hier zwei ultra-intensive Laserstrahlen, die von zwei Linsen auf fast den gleichen Fleck fokussiert werden. In entgegen gesetzter Richtung wird zudem ein Prüf-Laser eingestrahlt. Im klassischen Doppelspalt-Experiment hat ein Photon aus dem Laserstrahl die Wahl, ob es durch die rechte oder linke Öffnung hindurchgeht. Diese Wahlmöglichkeit bewirkt, dass sich hinter dem Doppelspalt ein streifenförmiges Interferenzbild ausbildet.

In dem Experiment, das die Heidelberger Physiker jetzt vorschlagen, hat ein Photon aus dem Prüf-Laser die Wahl, mit welchem der beiden ultra-intensiven Laserstrahlen es in Wechselwirkung tritt. Entscheidend ist, dass die Photonen überhaupt miteinander in Wechselwirkung treten. Das tun sie mithilfe sogenannter Quantenfluktuationen im Vakuum: Das Vakuum ist nämlich nicht leer; ständig entstehen Paare aus virtuellen Teilchen und ihren Antiteilchen, beispielsweise virtuelle Elektronen und virtuelle Positronen. Nach der unvorstellbar kurzen Zeit von 10-21 Sekunden zerfallen die virtuellen Paare dann wieder.

Wenn ein virtuelles Elektron-Positron-Paar entsteht, absorbiert es zwei Photonen: eines von dem Prüf-Laser und eines von einem der beiden ultra-intensiven Laser. Sobald das Paar wieder zerfällt, emittiert es wieder zwei Photonen - in einer anderen Richtung als der ursprünglichen: Nachdem der Prüfstrahl mit den ultra-intensiven Lasern zusammengetroffen ist, wird er von einem Schirm aufgefangen.

Eine Simulation der Wissenschaftler am Max-Planck-Institut für Kernphysik zeigt: Auf dem Schirm ist das charakteristische Interferenzbild eines Doppelspalts zu sehen- helle und dunkle Streifen, und die Minima und Maxima in der Helligkeitsverteilung liegen genau dort, wo es nach der klassischen Formel zu erwarten ist.

Die Realisierung des Experiments steht noch aus, da bislang keine ausreichend intensiven Laser zur Verfügung stehen. Das dürfte sich jedoch in absehbarer Zeit ändern, wenn in einem europäischen und einem britischen Projekt zwei Laser mit genügend hohen Intensitäten gebaut werden.

Mithilfe des materielosen Doppelspalts wollen die Physiker dann zweierlei untersuchen: Das Elektron und das Positron, die an der Quantenfluktuation beteiligt sind, sind zwar virtuell, sie hinterlassen keine Spuren. Die Photonen, die dann abgestrahlt werden, sind jedoch real, sie können von einem Schirm aufgefangen werden. "Es gibt bereits Hinweise, dass virtuelle Photonen im Vakuum miteinander wechselwirken. Wir möchten jedoch mit dem Experiment beweisen, dass auch reale Photonen im Vakuum miteinander wechselwirken", sagt Antonino Di Piazza. "Wir eröffnen die Möglichkeit, Licht mit Licht zu kontrollieren." Außerdem wollen die Forscher etwas über die Struktur des Quantenvakuums, also des Vakuums mit den Quantenfluktuationen herausfinden.

Originalveröffentlichung:

Ben King, Antonino Di Piazza & Christoph H. Keitel
A matterless double slit
Nature Photonics, 10. Januar 2010
Weitere Informationen erhalten Sie von:
Dr. Antonino Di Piazza
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-171
E-Mail: dipiazza@mpi-hd.mpg.de
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie